995 resultados para Agricultural mathematics
Resumo:
Information graphics have become increasingly important in representing, organising and analysing information in a technological age. In classroom contexts, information graphics are typically associated with graphs, maps and number lines. However, all students need to become competent with the broad range of graphics that they will encounter in mathematical situations. This paper provides a rationale for creating a test to measure students’ knowledge of graphics. This instrument can be used in mass testing and individual (in-depth) situations. Our analysis of the utility of this instrument informs policy and practice. The results provide an appreciation of the relative difficulty of different information graphics; and provide the capacity to benchmark information about students’ knowledge of graphics. The implications for practice include the need to support the development of students’ knowledge of graphics, the existence of gender differences, the role of cross-curriculum applications in learning about graphics, and the need to explicate the links among graphics.
Resumo:
Prior to entering schooling settings, many children exhibit intuitive knowledge of mathematics and many have mastered basic addition combinations. However, often as a result of formal instruction, some children begin to dislike or fear mathematics. In this study, children at a kindergarten in China took a smiley-face survey to determine how their feelings and beliefs about mathematics were affected throughout their kindergarten years.Results suggest that even children in this study have a better number sense and mathematics achievement, they appear to develop mathematics anxiety in Chinese cultural context.
Resumo:
A literature-based instrument gathered data about 147 final-year preservice teachers’ perceptions of their mentors’ practices related to primary mathematics teaching. Five factors characterized effective mentoring practices in primary mathematics teaching had acceptable Cronbach alphas, that is, Personal Attributes (mean scale score=3.97, SD [standard deviation]=0.81), System Requirements (mean scale score=2.98, SD=0.96), Pedagogical Knowledge (mean scale score=3.61, SD=0.89), Modelling (mean scale score=4.03, SD=0.73), and Feedback (mean scale score=3.80, SD=0.86) were .91, .74, .94, .89, and .86 respectively. Qualitative data (n=44) investigated mentors’ perceptions of mentoring these preservice teachers, including identification of successful mentoring practices and ways to enhance practices.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
This paper reports on a study to measure the effectiveness of an integrated learning system (ILS) in improving mathematics achievement for low achieving Year 5 to 9 students. The study found that statistically significant gains on the integrated learning system were not supported by scores on standardised mathematics achievement tests. It also found that although student attitudes to computers decreased (significantly for some items), the students still liked the integrated learning system and felt that it had helped them to learn.
Resumo:
This study explores successful junior high school principals’ leadership practices for implementing the reformed mathematics curriculum in Taipei. Avolio and Bass’s (2002) full range leadership theory was used to record data through interviews and observations of five Taipei “Grade A” junior high school principals. Findings revealed that specific leadership practices linked to management by exception-active and contingent reward (transaction leadership), and individualised consideration and idealised influence (transformational) were considered effective for implementing reform measures. Ensuring principals are aware of effective measures may further assist reform agendas.
Resumo:
There is a growing consensus among many educators that the goals of teaching and learning mathematics are to help students solve real-life problems, participate intelligently in daily affairs, and prepare them for jobs (Gardiner, 1994; Roeber, 1995). These goals suggest that the role of routine procedural skills should be diminished while more emphasis ought to be placed on learners gaining conceptual insights and analytical skills that appear essential in real-life mathematical problem solving (Schoenfeld, 1993; Stenmark, 1989).
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This paper is a beginning point for discussing what the literature states about parents’ involvement in their children’s mathematics education. Where possible it will focus on Torres Strait Islander Peoples. Little is known about how Torres Strait Islander parents approach their children’s learning of mathematics and how important early mathematics is to mothers. What is known is that is they are keen for their children to receive an education that provides them with opportunities for their present and future lives. However, gaining access to education is challenging given that the language of instruction in schools is written to English conventions, decontextualised and disconnected from the students’ culture, community and home language. This paper discusses some of the issues raised in the literature about what parents are confronted with when making decisions about their children’s education.
Resumo:
This document reports on the Innovations Working Group that met at the 10th International Conference “Models in Developing Mathematics Education” from the 11-17th September 2009 in Dresden, Saxony. It briefly describes the over arching and consistent themes that emerged from the numerous papers presented. The authors and titles of each of the papers presented will be listed in Table 2.
Resumo:
This abstract is a preliminary discussion of the importance of blending of Indigenous cultural knowledges with mainstream knowledges of mathematics for supporting Indigenous young people. This import is emphasised in the documents Preparing the Ground for Partnership (Priest, 2005), The Indigenous Education Strategic Directions 2008–2011 (Department of Education, Training and the Arts, 2007) and the National Goals for Indigenous Education (Department of Education, Employment and Work Relations, 2008). These documents highlight the contextualising of literacy and numeracy to students’ community and culture (see Priest, 2005). Here, Community describes “a culture that is oriented primarily towards the needs of the group. Martin Nakata (2007) describes contextualising to culture as about that which already exists, that is, Torres Strait Islander community, cultural context and home languages (Nakata, 2007, p. 2). Continuing, Ezeife (2002) cites Hollins (1996) in stating that Indigenous people belong to “high-context culture groups” (p. 185). That is, “high-context cultures are characterized by a holistic (top-down) approach to information processing in which meaning is “extracted” from the environment and the situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information processing in which meaning is constructed” (p.185). In this regard, students who use holistic thought processing are more likely to be disadvantaged in mainstream mathematics classrooms. This is because Westernised mathematics is presented as broken into parts with limited connections made between concepts and with the students’ culture. It potentially conflicts with how they learn. If this is to change the curriculum needs to be made more culture-sensitive and community orientated so that students know and understand what they are learning and for what purposes.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.