996 resultados para 290202 Flight Dynamics
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
The purpose of this study is to apply inverse dynamics control for a six degree of freedom flight simulator motion system. Imperfect compensation of the inverse dynamic control is intentionally introduced in order to simplify the implementation of this approach. The control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation. The control strategy is designed using H∞ theory. Forward and inverse kinematics and full dynamic model of a six degrees of freedom motion base driven by electromechanical actuators are briefly presented. Describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.
Resumo:
Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
Metacommunity ecology focuses on the interaction between local communities and is inherently linked to dispersal as a result. Within this framework, communities are structured by a combination of in-site responses to the immediate environment (species sorting), stochasticity (patch dynamics), and connections to other communities via distance between communities and dispersal (neutrality), and source-sink dynamics (mass effects; see Chapter 1 for a detailed description of metacommunity theory, the study site, and macroinvertebrate communities found). In Chapter 2 I describe spatial scale of study and dispersal ability as both have the ability to influence the degree to which communities interact. However, little is known about how these factors influence the importance of all metacommunity dynamics. I compared dispersal mode of immature aquatic insects and dispersal ability of winged adults across multiple spatial scales in a large river. The strongest drivers of river communities were patch dynamics, followed by species sorting, then neutrality. Active dispersers during aquatic lifestages on average exhibited lower patch dynamics, higher species sorting, and significant mass effects compared to passive dispersers. Active and strong dispersers also had a scale-independent influence of neutrality, while neutrality was stronger at broader spatial scale for passive and weak dispersers. These results indicate as dispersal ability increases patch dynamics decreases, species sorting increases, and neutrality should decrease. The perceived influence of neutrality may also be dependent on spatial scale and dispersal ability. In Chapter 3 I describe how river benthic macroinvertebrate communities may influence tributary invertebrate communities via adult flight and tributaries may influence mainstem communities via immature drift. This relationship may also depend on relative mainstem and tributary size, as well as abiotic tributary influence on mainstem habitat. To investigate the interaction between a larger river and tributary I sampled mainstem benthic invertebrate communities and quantified habitat of a 7th order river (West Branch Susquehanna River) above and below a 5th order tributary confluence, as well as 0.95-3.2 km upstream in the tributary. Non-metric multidimensional scaling showed similar patterns of clustering between sampling locations for both habitat characteristics and invertebrate communities. In addition, mainstem river communities and habitat directly downstream of the tributary confluence cluster tightly together, intermediate between tributary and mid-channel river samples. In Bray-Curtis dissimilarity comparisons between tributary and mainstem river communities the furthest upstream tributary communities were least similar to river communities. Middle tributary samples were also closest by Euclidean distance to the upstream mainstem riffle and exhibited higher similarity to mid-channel samples than the furthest downstream tributary communities. My results indicate river and tributary benthic invertebrate communities may interact and likely result in direct and indirect mass effects of a tributary on the downstream mainstem community by invertebrate drift and habitat restructuring via material delivery from the tributary. I also showed likely direct effects of adult dispersal from the river and oviposition in proximal tributary locations where Euclidian, rather than river, distance may be more important in determining river-tributary interactions.
Resumo:
Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.
Resumo:
The ion beam shepherd (IBS) is a recently proposed concept for modifying the orbit and/or attitude of a generic orbiting body in a contactless manner, which makes it a candidate technology for active space debris removal. In this paper we deal with the problem of controlling the relative position of a shepherd satellite coorbiting at small separation distance with a target debris. After deriving the orbit relative motion equations including the effect of the ion beam perturbation we study the system stability and propose different control strategies.
Resumo:
Bead models are used in dynamical simulation of tethers. These models discretize a cable using beads distributed along its length. The time evolution is obtained nu- merically. Typically the number of particles ranges between 5 and 50, depending on the required accuracy. Sometimes the simulation is extended over long periods (several years). The complex interactions between the cable and its spatial environment require to optimize the propagators —both in runtime and precisión that constitute the central core of the process. The special perturbation method treated on this article conjugates simpleness of computer implementation, speediness and precision, and is capable to propagate the orbit of whichever material particle. The paper describes the evolution of some orbital elements, which are constants in a non-perturbed problem, but which evolve in the time scale imposed by the perturbation. It can be used with any kind of orbit and it is free of sin- gularities related to small inclination and/or small eccentricity. The use of Euler parameters makes it robust.
Resumo:
The pararotor is a biology-inspired decelerator device based on the autorotation of a rotary wing whose main purpose is to guide a load descent into a certain atmosphere. This paper focuses on a practical approach to the general dynamic stability of a pararotor whose center of mass is displaced from the blade plane. The analytical study departs from the motion equations of pararotor flight, considering the center of mass displacement from the blade plane, studied over a number of simplifying hypotheses that allows determining the most important influences to flight behavior near equilibrium. Two practical indexes are developed to characterize the stability of a pararotor in terms of geometry, inertia, and the aerodynamic characteristics of the device. Based on these two parameters, a stability diagram can be defined upon which stability regions can be identified. It was concluded that the ability to reach stability conditions depends mainly on a limited number of parameters associated with the pararotor configuration: the relationship between moments of inertia, the position of the blades, the planform shape (associated with the blade aerodynamic coefficients and blade area), and the vertical distance between the center of mass and the blade plane. These parameters can be evaluated by computing practical indexes to determine stability behavior.
Resumo:
Since concomitant release of structurally related peptide hormones with apparently similar functions seems to be a general concept in endocrinology, we have studied the dynamics of the lifetime of the three known adipokinetic hormones (AKHs) of the migratory locust, which control flight-directed mobilization of carbohydrate and lipid from fat body stores. Although the structure of the first member of the AKHs has been known for 20 years, until now, reliable data on their inactivation and removal from the hemolymph are lacking, because measurement requires AKHs with high specific radioactivity. Employing tritiated AKHs with high specific radioactivity, obtained by catalytic reduction with tritium gas of the dehydroLeu2 analogues of the AKHs synthesized by the solid-phase procedure, studies with physiological doses of as low as 1.0 pmol per locust could be conducted. The AKHs appear to be transported in the hemolymph in their free forms and not associated with a carrier protein, despite their strong hydrophobicity. Application of AKHs in their free form in in vivo and in vitro studies therefore now has been justified. We have studied the degradation of the three AKHs during rest and flight. The first cleavage step by an endopeptidase is crucial, since the resulting degradation products lack any adipokinetic activity. Half-lives for AKH-I, -II and -III were 51, 40, and 5 min, respectively, for rest conditions and 35, 37, and 3 min, respectively, during flight. The rapid and differential degradation of structurally related hormones leads to changes in the ratio in which they are released and therefore will have important consequences for concerted hormone action at the level of the target organ or organs, suggesting that each of the known AKHs may play its own biological role in the overall syndrome of insect flight.
Resumo:
"To be presented to the Fluid Dynamics Panel of the Advisory Group for Aeronautical Research and Development of the North Atlantic Treaty Organization, 10 April through 17 April 1961."
Resumo:
"Part I of the present paper was supported by the Arnold Engineering Development Center under Contract no. AF-40-(601)-928. Part II is a part of project DEFENDER sponsored by the Advanced Research Projects Agency, Department of Defense, under Contract no. DA-30-069-ORD-3443."
Resumo:
v.1. Environmental and celestial mechanics. v.2. Dynamics.
Resumo:
Prior to the development of a production standard control system for ML Aviation's plan-symmetric remotely piloted helicopter system, SPRITE, optimum solutions to technical requirements had yet to be found for some aspects of the work. This thesis describes an industrial project where solutions to real problems have been provided within strict timescale constraints. Use has been made of published material wherever appropriate, new solutions have been contributed where none existed previously. A lack of clearly defined user requirements from potential Remotely Piloted Air Vehicle (RPAV) system users is identified, A simulation package is defined to enable the RPAV designer to progress with air vehicle and control system design, development and evaluation studies and to assist the user to investigate his applications. The theoretical basis of this simulation package is developed including Co-axial Contra-rotating Twin Rotor (CCTR), six degrees of freedom motion, fuselage aerodynamics and sensor and control system models. A compatible system of equations is derived for modelling a miniature plan-symmetric helicopter. Rigorous searches revealed a lack of CCTR models, based on closed form expressions to obviate integration along the rotor blade, for stabilisation and navigation studies through simulation. An economic CCTR simulation model is developed and validated by comparison with published work and practical tests. Confusion in published work between attitude and Euler angles is clarified. The implementation of package is discussed. dynamic adjustment of assessment. the theory into a high integrity software Use is made of a novel technique basing the integration time step size on error Simulation output for control system stability verification, cross coupling of motion between control channels and air vehicle response to demands and horizontal wind gusts studies are presented. Contra-Rotating Twin Rotor Flight Control System Remotely Piloted Plan-Symmetric Helicopter Simulation Six Degrees of Freedom Motion ( i i)
Resumo:
Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp.