945 resultados para 2-DIMENSIONAL GEL-ELECTROPHORESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By photoluminescence measurements we find that at low temperature the linewidth of the excitonic luminescence broadens with increasing electron density in the wider well from a photoexcited type-I-type-II mixed GaAs/AlAs asymmetric double quantum well structure, which even makes the excitonic linewidth at 77 K larger than at 300 K above a certain excitation intensity. We verify that the broadening is due to the scattering of two-dimensional carriers to excitonic states. Based on the theory of the scattering of carriers to excitonic states, we calculate the broadening of the excitonic linewidth. Our experimental results are convincing for verifying the theoretical prediction. (C) 1995 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared absorption due to a collective excitation of a two-dimensional electronic gas was observed in GaAs/AlxGa1-xAs multiple-quantum wells when the incident light is polarized parallel to the quantum-well plane. We attribute this phenomenon to a plasma oscillation in the quantum wells. The measured wavelength of the absorption peak due to the plasma oscillation agrees with our theoretical analysis. In addition, in this study the plasma-phonon coupling effect is also fitted to the experimental result. We show that the absorption is not related to the intersubband transitions but to the intrasubband transition, which originates from a plasma oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaAs/AIGaAs two-dimensional quantum-well wire laser arrays fabricated by metal-organic chemical vapour deposition on nonplanar substrates have realised a linear light pulse output Fewer of over 100mW. This is the highest figure reported to date for all kinds of quantum-well wire lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present photoluminescence studies on highly dense two-dimensional electron gases in selectively Si delta-doped GaAs/In0.18Ga0.82As/Al0.25Ga0.75As quantum wells (N(s) = 4.24 x 10(12) cm-2). Five well-resolved photoluminescence lines centered at 1.4194, 1.4506, 1.4609, 1.4695 and 1.4808 eV were observed, which are attributed to the subband excition emission. The subband separations clearly exhibit the feature of a typical quantum well with triangle and square potential. These very intensive and sharp luminescence peaks with linewidths of 2.2 to 3.5 meV indicate the high quality of the structures. Their dependence on the excitation intensity and temperatures are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

土壤是人类赖以生存的自然环境和农业生产的重要资源,目前土壤受到干旱和盐胁迫的危害越来越严重。杨树具有适应性强、生长快和丰产等特性,本论文以青杨组杨树为模式植物,研究杨树对土壤干旱和盐胁迫的生态生理及蛋白质组学反应,研究成果可为我国干旱半干旱地区营造人工林、防止沙漠化提供理论依据,也为恢复与重建盐污染地区退化生态系统提供科学指导。主要研究结果如下: 1 青杨不同种对逐步干旱胁迫的响应差异 将来自喜马拉雅山东缘高海拔的康定杨和低海拔的青杨枝条扦插在温室中,用来检测它们对逐步干旱胁迫的响应。研究结果表明来自不同海拔的杨树对逐步干旱胁迫的适应性反应是不一样的。株高、叶片发育、叶片相对含水量、丙二醛、过氧化氢等指标的显著性变化在青杨中比在康定杨中来得早些,而且随着干旱胁迫程度的增加,这些参数的变化越来越明显,尤其是当青杨受到严重干旱胁迫的时候;而可溶性蛋白、可溶性糖、游离脯氨酸、抗氧化酶活力变化在康定杨中来得早一些。与青杨相比,在干旱胁迫下,康定杨仍能保持较好的植株生长和叶片发育;康定杨也能在逐步干旱条件下积累更多的可溶性蛋白、可溶性糖、游离脯氨酸及抗氧化酶活力,但是在丙二醛和过氧化氢含量方面增加的更少些。而且,我们的研究结果表明高海拔的康定杨有更强的耐干旱能力,杨树对干旱胁迫的适应能力与干旱发生的速度、强度、持续时间及两种杨树的海拔有关。 2 干旱胁迫下青杨不同种的蛋白质组学分析 来自青杨和康定杨雌株的枝条扦插在温室中,用来研究它们对干旱胁迫的蛋白质组学反应。采用TCA-丙酮/酚提取法提取总蛋白,并进行双向电泳分析。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。在青杨中有58 个蛋白在干旱处理后发生显著变化,其中22 个蛋白通过肽指纹图谱成功鉴定。康定杨中有69 个蛋白的表达量发生了显著变化,其中有25 个蛋白通过肽指纹图谱成功鉴定。这些被鉴定的蛋白主要参与了光合作用、氧化还原平衡、信号传导、能量代谢、蛋白质合成等过程。尽管被鉴定的蛋白只占叶片总蛋白的很少一部分,但这些被鉴定的干旱响应蛋白可能对维持植株内部平衡方面有重要作用。 3 青杨的盐胁迫响应 青杨植株分别用 0、50 和100 mM NaCl 溶液进行处理。叶片相对含水量、叶绿素a、b 含量、CO2 同化速率和气孔导度的降低表明叶绿体受到了盐胁迫的影响。过氧化氢、丙二醛含量及电导率的升高表明细胞受到了伤害。可溶性糖、游离脯氨酸含量及抗氧化酶含量的上升增加了植株耐盐胁迫的能力。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。其中有38 个盐响应蛋白被成功鉴定,有16 个蛋白(点4、10、11、14、15、21、24、26、27、28、33、34、35、36、37 和38)出现在盐胁迫的植株中;3 个蛋白(点10、11 和35)只出现在重度盐胁迫处理中;而1 个蛋白(点1)只出现在对照处理中。2 个蛋白(点1 和2)表达量下降,其余蛋白点表达量都增加。被鉴定的蛋白一部分参与了生理生化反应,而另一部分则在信号传导、蛋白质合成等方面有重要作用。盐胁迫下的生理生化变化及蛋白质组学的联合研究有利于青杨对盐胁迫的适应性分析。 Soil is the indispensable environment for human survival and important resource for agriculture development. Nowadays soil is threatened by drought stress and salt stress. Poplars (Populus spp.) possess some characters such as strong acclimilation, fast growth and great production of biomass. In this study, different species of Populus section Tacamahaca spach were used as model plants to investigate the ecophysiological and proteomic responses to drought stress and salt stress. Our results can provide theoretical evidence for the afforestation and prevention of desertification in the arid and semi-arid areas, and also can supply scientific direction for the reconstruction and rehalibitation of ecosystems contaminated by salinity. The results are as follows: 1 Adaptive responses to progressive drought stress in two contrasting poplar species originating from different altitudes Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehd., originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine the effects of progressive drought stress. The results manifested that the adaptive responses to progressive drought stress were different in these two species from different altitudes. Significant changes in height increment, leaf development, relative water content (RWC), malondialdehyde (MDA) and hydrogen peroxide (H2O2) appeared earlier in P. cathayana than in P. kangdingensis, whereas changes in soluble protein, soluble sugar, free proline and antioxidant enzymes appeared earlier in P. kangdingensis. In addition, changes in these parameters became more and more significant when the drought stress progressed, especially under severe drought stress in P. cathayana. Compared with P. cathayana, P. kangdingensis was able to maintain a superior height increase and leaf development under drought stress. Also, P. kangdingensis possessed greater increments in soluble protein, soluble sugar, free proline and antioxidant enzymes, but lower increments in MDA and H2O2 than did P. cathayana when the cuttings were exposed to progressive drought stress. Our results suggest that P. kangdingensis originating from the high altitude has a better drought tolerance than does P. cathayana originating from the low altitude. Furthermore, this study manifested that acclimation to drought stress are related the rapidity, severity, duration of the drought event and the altitude of two contrasting species. 2 Proteomic responses to drought stress in two contrasting poplar species originating from different altitudes The cuttings from a female clone of P. kangdingensis and P. cathayana were used to determine proteomic response to drought stress, respectively. Total proteins of the leaves were extracted by a combination of TCA-acetone and phenol, and separated by two-dimensional gel electrophoresis. More than 1,000 protein spots were reproducibly detected on each gel. 58 differentially expressed spots were detected under drought stress in P. cathayana and 22 drought-responsive proteins were identified by peptide mass fingerprint. 69 differentially expressed spots were detected under drought stress in P. kangdingensiss and 25 drought-responsive proteins were identified by peptide mass fingerprint. The identified proteins are involved in several processes, i.e., signal transduction, protein processing, redox homeostasis, CO2 fixation and energy metabolism. Although the proteins identified in this investigation represent only a very small part of the poplar leaf proteins, some of the novel drought-responsive proteins identified here may be involved in the establishment of homeostasis in response to drought stress in the woody plants. 3 Responses to salt stress in P. cathayana Cuttings from a female clone of P. cathayana were treated by Hoagland’s solution: 0, 50, 100 mM NaCl, respectively. Salinity significantly decreased the relative water content of leaves, the contents of chlorophyll a and chlorophyll b, CO2 assimilation rate (A) and stomatal conductance (gs) in both salt stress treatments,which suggested the chloroplast was affected by salt stress. The observed increases of H2O2 and malondialdehyde contents and electrolyte leakage suggested that salinity caused cellular damage, whereas the increases in compatible solutes and in the activities of antioxidant enzymes enhanced the salt tolerance. More than 1,000 protein spots were reproducibly detected on each gel, and 38 salt-responsive proteins were successfully identified by peptide mass fingerprint (PMF). 16 spots (spot 4, 10, 11, 14, 15, 21, 24, 26, 27, 28, 33, 34, 35, 36, 37 and 38) absent in the control sample were induced by the salt treatment, and three spots (spot 10,11 and 35) were present only in the severely salt-stressed treatment. The %vol of the differentially expressed proteins generally increased with progressing salt stress, except for the decreased %vol of two proteins (spot 1 and 2) under salt stress and the presence of spot 1 only in the control sample. Some of the novel salt-responsive proteins identified here may be involved in physiological, biochemical response to salt stress in P. cathayana, the other identified proteins play a role in numerous cellular functions, including signal transduction and protein processing. An integrated physiological, biochemical and proteomic approach was used here to systematically investigate salt acclimation in poplar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) was on-line hyphenated by a dialysis interface to achieve a 2D capillary electrophoresis (CE) system. The system was used with just one high-voltage power supply and three electrodes (one cathode shared by the two dimensions). The focused zone in the first dimension (i.e. the cIEF) was driven to the dialysis interface by electroosmotic flow (EOF), besides chemical mobilization from the first anode to the shared cathode. And then in the second dimension (i.e. the CZE), the separated zone was further separated and driven by an inverted EOF, which originated from the charged layer of a cationic surfactant adsorbed onto the inner wall of the capillary. Finally, a solution of ribonuclease was rapidly separated to assess the feasibility of the two-dimensional CE implement. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The homogeneities and molecular weights of three arginine esterases from snake venom, which possessing therapeutic use in myocardial infarction, were determined and compared, MALDI-TOF-MS is possessed of high accuracy, high sensitivity and rapidity. MALDI-TOF-MS and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) can provide complementary and confirmatory results information. MALDI-TOF-MS can be directly used as an important method for the purification of snake venom complexes successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain an insight into the function of shrimp lymphoid organ at protein level, we analyzed the proteome of lymphoid organ in healthy Chinese shrimp Fenneropenaeus chinensis (F. chinensis) through two-dimensional gel electrophoresis (2-DE) based proteomic approach. A total of 95 spots representing 75 protein entries were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) with both online and in-house database. According to Gene Ontology (GO) annotation of biological process, the identified proteins were classified into 13 categories. Among them, approximately 36% of proteins related to cytoskeleton are noticeable. Then, a comparative proteomic approach was employed to investigate the differentially expressed proteins in lymphoid organ of Vibrio anguillarum-challenged F. chinensis. At 24 h post-injection (hpi), 17 differentially expressed protein spots were successfully identified, including 4 up-regulated protein spots (represent 4 proteins: cathepsin L protein similar to squid CG16901-PC, protein kinase C and protein similar to T-complex Chaperonin 5 CG8439-PA), and 13 down-regulated protein spots (represent 9 proteins: actin, beta-actin, cytoplasmic actin CyII, alpha tubulin, beta tubulin, protein similar to proteasome delta, vacuolar ATP synthase subunit B, elongation factor 2, carboxypeptidase B). These data may help us to understand the function of lymphoid organ and the molecular immune mechanism of shrimp responsive to pathogen infection. (C) 2010 Elsevier Ltd. All rights reserved.