981 resultados para teamwork assessment
Resumo:
Children with developmental co-ordination disorder (DCD) face evident motor difficulties in activities of daily living (ADL). Assessment of their capacity in ADL is essential for diagnosis and intervention, in order to limit the daily consequences of the disorder. The aim of this study is to systematically review potential instruments for standardized and objective assessment of children's capacity in ADL, suited for children with DCD. As a first step, databases of MEDLINE, EMBASE, CINAHL and PsycINFO were searched to identify studies that described instruments with potential for assessment of capacity in ADL. Second, instruments were included for review when two independent reviewers agreed that the instruments: (1) are standardized and objective; (2) assess at activity level and comprise items that reflect ADL, and; (3) are applicable to school-aged children that can move independently. Out of 1507 publications, 66 publications were selected, describing 39 instruments. Seven of these instruments were found to fulfil the criteria and were included for review: the Bruininks-Oseretsky Test of Motor Performance-2 (BOT2); the Do-Eat (Do-Eat); the Movement Assessment Battery for Children-2 (MABC2); the school-Assessment of Motor and Process Skills (schoolAMPS); the Tuffts Assessment of Motor Performance (TAMP); the Test of Gross Motor Development (TGMD); and the Functional Independence Measure for Children (WeeFIM). As a third step, for the included instruments, suitability for children with DCD was discussed based on the ADL comprised, ecological validity and other psychometric properties. We concluded that current instruments do not provide comprehensive and ecologically valid assessment of capacity in ADL as required for children with DCD.
Resumo:
Objective To develop the DCDDaily, an instrument for objective and standardized clinical assessment of capacity in activities of daily living (ADL) in children with developmental coordination disorder (DCD), and to investigate its usability, reliability, and validity. Subjects Five to eight-year-old children with and without DCD. Main measures The DCDDaily was developed based on thorough review of the literature and extensive expert involvement. To investigate the usability (assessment time and feasibility), reliability (internal consistency and repeatability), and validity (concurrent and discriminant validity) of the DCDDaily, children were assessed with the DCDDaily and the Movement Assessment Battery for Children-2 Test, and their parents filled in the Movement Assessment Battery for Children-2 Checklist and Developmental Coordination Disorder Questionnaire. Results 459 children were assessed (DCD group, n = 55; normative reference group, n = 404). Assessment was possible within 30 minutes and in any clinical setting. For internal consistency, Cronbach’s α = 0.83. Intraclass correlation = 0.87 for test–retest reliability and 0.89 for inter-rater reliability. Concurrent correlations with Movement Assessment Battery for Children-2 Test and questionnaires were ρ = −0.494, 0.239, and −0.284, p < 0.001. Discriminant validity measures showed significantly worse performance in the DCD group than in the control group (mean (SD) score 33 (5.6) versus 26 (4.3), p < 0.001). The area under curve characteristic = 0.872, sensitivity and specificity were 80%. Conclusions The DCDDaily is a valid and reliable instrument for clinical assessment of capacity in ADL, that is feasible for use in clinical practice.
Resumo:
Background Patients with diabetic foot disease require frequent screening to prevent complications and may be helped through telemedical home monitoring. Within this context, the goal was to determine the validity and reliability of assessing diabetic foot infection using photographic foot imaging and infrared thermography. Subjects and Methods For 38 patients with diabetes who presented with a foot infection or were admitted to the hospital with a foot-related complication, photographs of the plantar foot surface using a photographic imaging device and temperature data from six plantar regions using an infrared thermometer were obtained. A temperature difference between feet of > 2.2 °C defined a ''hotspot.'' Two independent observers assessed each foot for presence of foot infection, both live (using the Perfusion-Extent-Depth- Infection-Sensation classification) and from photographs 2 and 4 weeks later (for presence of erythema and ulcers). Agreement in diagnosis between live assessment and (the combination of ) photographic assessment and temperature recordings was calculated. Results Diagnosis of infection from photographs was specific (> 85%) but not very sensitive (< 60%). Diagnosis based on hotspots present was sensitive (> 90%) but not very specific (<25%). Diagnosis based on the combination of photographic and temperature assessments was both sensitive (> 60%) and specific (> 79%). Intra-observer agreement between photographic assessments was good (Cohen's j = 0.77 and 0.52 for both observers). Conclusions Diagnosis of foot infection in patients with diabetes seems valid and reliable using photographic imaging in combination with infrared thermography. This supports the intended use of these modalities for the home monitoring of high-risk patients with diabetes to facilitate early diagnosis of signs of foot infection.
Resumo:
To develop and test a custom-built instrument to simultaneously assess tear film surface quality (TFSQ) and subjective vision score (SVS).
Resumo:
The aim of this paper is to present results of research investigating the effectiveness of audio feedback in a third year undergraduate unit. While there is a large and growing body of literature about providing assessment feedback, there is little focussing on the use of audio media. This study employs a mixed method approach, involving semi-structured interviews with academic staff and a survey of students. Analysis of the interview data suggests that there are a number of issues surrounding acceptance of using audio feedback by lecturers. The next stage of the study is to examine the extent to which lecturers change their perceptions as they use audio feedback and to analyse the perceptions of the students (n=120), including the perceived importance of feedback, the ways in which they used the audio feedback and the extent to which they believe they control events that affect them. Ultimately, this study seeks to provide recommendations appropriate to the implementation of audio feedback in higher education.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
Dissatisfaction with, and discontinuation from, contact lens wear is a source of major frustration and inconvenience to users, and a problem that is thought to cost the contact lens industry hundreds of millions of dollars each year. By directly and non-invasively monitoring inflammatory cells in the tissues at the front of the eye in symptomatic and asymptomatic lens wearers, the candidate has been able to demonstrate an inflammatory basis for contact lens discomfort. This finding may pave the way towards the development of strategies to make contact lenses more safe and afford greater levels of comfort.
Resumo:
Physicochemical characterization of freshwater samples from Finland, Sweden, the Netherlands, and Spain revealed that water hardness and pH decreased and the quantity and quality of humic substances changed considerably in this geographical series from south to north. Since the ambient water chemistry may affect the availability of chemicals, the total aqueous concentration of a chemical may be insufficient to predict the bioconcentration, subsequent biological response, and thus risk. In addition, organisms could be affected directly by water quality characteristics. In this context the main objective of this thesis was to investigate the bioavailability of selected ecotoxicologically relevant chemicals (cadmium, benzo(a)pyrene, and pyrene) in various European surface waters and to show the importance of certain water chemistry characteristics in interpreting the bioavailability and toxicity results. The bioavailability of cadmium to Daphnia magna was examined in very soft humic lake water. Humic substances as natural ligands decreased the free and bioavailable proportion of cadmium in soft lake water. As a consequence the uptake rate and the acute toxicity decreased compared with the humic-free reference. When the hardness of humic lake water was artificially elevated, the acute toxicity of cadmium decreased, although the proportion of free cadmium increased. The decreased bioavailability of cadmium in hard water was a result of effective competition for uptake by the hardness cations, especially calcium ions. The protective role of humic substances and water hardness against cadmium toxicity was also observed in Lumbriculus variegatus, although D. magna was more sensitive to cadmium. The bioavailability of two polycyclic aromatic hydrocarbons (PAHs), pyrene and benzo(a)pyrene, was studied in European surface waters of varying water chemistry. Humic substances acted as complexing ligands with both PAHs, but the bioavailability of the more lipophilic benzo(a)pyrene to D. magna was affected more by humic substances than that of pyrene. In addition, not only the quantity of humic substances, but also their quality affected the bioavailability of benzo(a)pyrene. Nevertheless, the humic substances played a protective role in the photo-enhanced toxicity of pyrene under UV-B radiation. Water hardness had no effect on pyrene toxicity. Results indicate that the typical physicochemical characteristics of boreal freshwaters should be considered carefully in local and regional risk assessment of chemicals concerning the Fennoscandian region.
Resumo:
This paper introduces a policy-making support tool called ‘Micro-level Urban ecosystem Sustainability IndeX (MUSIX)’. The index serves as a sustainability assessment model that monitors six aspects of urban ecosystems, hydrology, ecology, pollution, location, design, and efficiency based on parcel-scale indicators. This index is applied in a case study investigation in the Gold Coast City, Queensland, Australia. The outcomes reveal that there are major environmental problems caused by increased impervious surfaces from growing urban development in the study area. The findings suggest that increased impervious surfaces are linked to increased surface runoff, car dependency, transport-related pollution, poor public transport accessibility, and unsustainable built environment. This paper presents how the MUSIX outputs can be used to guide policy-making through the evaluation of existing policies.
Resumo:
Since its inception, the Systems Theory Framework of career development has afforded ready translation into practice, especially into career counselling and qualitative career assessment. Through its clearly articulated constructs and the clarity of its diagrammatic representation, the Systems Theory Framework has facilitated the development of qualitative career assessment instruments as well as a quantitative measure. This article briefly overviews these practical applications of the Systems Theory Framework as well as its application in career counselling through a story telling approach. The article concludes by offering a synthesis of and considering future directions for the Systems Theory Framework’s practical applications.
Resumo:
Career assessment has long held a central place in career counselling since the work of Parsons (1909) signalled the birth of a new field of practice, vocational guidance, and its subsequent iterations of career guidance and counselling and more recently life designing.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.