950 resultados para split-step Fourier method
Resumo:
O presente trabalho tem como objectivo o desenvolvimento de um método analítico, baseado na voltametria de onda quadrada (SWV), para a análise de ciprofloxacina (CIP) em produtos farmacêuticos e em processos de remediação. Para o desenvolvimento do método voltamétrico foram utilizadas duas células voltamétricas: a célula clássica (utilizando um eléctrodo de trabalho de carbono vítreo - GCE) e um eléctrodo de carbono impresso (SPCE). Após a optimização dos parâmetros da SWV, pH (3,04), frequência (400Hz), incremento de potencial (6 mV) e amplitude do impulso de potencial (40 mV), procedeu-se a validação dos métodos, obtendo-se zonas lineares entre a concentração de CIP e a intensidade de corrente de pico de 5,0×10-6 a 6,0×10-5 mol/L (GCE) e de 1,0×10-5 a 4,0×10-5 mol/L (SPCE) e limites de detecção de 9,48×10-6 mol/L (GCE) e 2,13×10-6 mol/L (SPCE). Verificou-se que a sensibilidade, a precisão e a selectividade são superiores para o SPCE, sendo por isso esta a célula mais adequada para proceder à análise da CIP em produtos farmacêuticos. O SPCE foi aplicado com sucesso à análise de CIP num produto farmacêutico. Para o tratamento de soluções aquosas contendo a CIP foram testados dois oxidantes: o permanganato de potássio e o peróxido de hidrogénio. Para o peróxido de hidrogénio os resultados obtidos foram inconclusivos. No caso do permanganato de potássio, os resultados mostram que a degradação da ciprofloxacina depende da concentração do oxidante. Para uma concentração de CIP de 3,00×10-4 mol/L uma degradação rápida foi obtida com o uso de 6,00×10-3 mol/L de permanganato de potássio. Na aplicação do permanganato na remediação de solos verificou-se que no caso de solos húmicos a ciprofloxacina é adsorvida pelo solo, não sendo possível confirmar a ocorrência da reacção de degradação. No caso de solos arenosos verificou-se que a ciprofloxacina foi rapidamente degradada pelo permanganato de potássio.
Resumo:
O consumo de energia tem vindo a crescer de uma forma contínua e directamente proporcional ao aumento da população e da industrialização. A maior parte da energia consumida no Mundo é, ainda, proveniente dos combustíveis fósseis. Contudo, a diminuição da reserva e a poluição atmosférica produzida pela sua utilização, estimulam e aumentam a necessidade de fontes alternativas de energia. O biodiesel tem atraído considerável atenção como combustível renovável, biodegradável e não tóxico, e pode contribuir para a resolução do problema energético, reduzindo significativamente a emissão dos gases causadores do aquecimento global. A primeira etapa deste trabalho consistiu na simulação de diferentes alternativas de processos de produção de biodiesel. O método usado para a produção do biodiesel foi a transesterificação entre os óleos vegetais e um álcool, na presença de um catalisador. Entre as matérias-primas figuram os óleos de palma e os óleos alimentares usados que foram objecto de estudo nesta dissertação. Na segunda etapa realizou-se uma análise do ciclo de vida para todas as alternativas em estudo seguida de uma análise económica para as alternativas que apresentassem menores impactos e que fossem mais promissoras do ponto de vista económico. Por fim, procedeu-se à comparação das diferentes alternativas sob o ponto de vista da análise do ciclo de vida e sob o ponto de vista da análise económica. Comprovou-se a viabilidade de todos os processos e o biodiesel obtido apresentou boas especificações. Do ponto de vista da análise do ciclo de vida a melhor alternativa foi o processo de catálise alcalina com pré-tratamento ácido para óleos alimentares usados. O processo que usa como matérias-primas os óleos virgens, o metanol e o hidróxido de sódio apresenta, no entanto, menores custos de investimento. Contudo, o processo de catálise alcalina com pré-tratamento ácido cuja matéria-prima principal são os óleos usados é muito mais rentável e apresenta menores impactes ambientais.
Resumo:
OBJECTIVE: Use of analgesics has been increasingly recognized as a major public health issue with important consequences in Turkey. The objective of the study was to determine the prevalence and patterns of analgesics usage and associated factors in adults with pain complaints. METHODS: A cross-sectional study was conducted in 15 cities selected from five demographic regions in Turkey. The study sample population comprised 1.909 adults 18-65 age groups suffering from pain. The sampling method was multi-step stratified weighted quota-adjusted sampling. Data were collected by face-to-face interviews using a semi-structured survey questionnaire consisting of 28 questions. Odds ratios were produced by logistic regression analyses. RESULTS: The prevalence of analgesic use was 73.1%, and it was higher in females (75.7%; p<0.05), in subjects 45-54 years (81.4%; p<0.05), in subjects in rural areas (74.6%; p<0.05), in subjects in northern region (84.3%; p<0.05), in illiterate subjects (79.1%; p>0.05), and in subjects of lower socioeconomic status (74.1%; p>0.05). One in ten of the participants used non-prescription analgesics. Non-prescription analgesics were more prevalent among the 55-65 age groups (18.1%; p<0.05), among female (11.6%; p>0.05), among the urban population (10.7%; p>0.05), and in subjects of lower middle socioeconomic status (13.2%; p<0.05). Logistic regression showed statistically significant ORs only for age groups, duration of education, socioeconomic status, and demographic regions (p<0.05). CONCLUSIONS: The results showed that the prevalence of analgesic use and prescription analgesic use is high in Turkey, and their use is related to sociodemographic characteristics.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, 18 de Março de 2016, Universidade dos Açores.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 15 de Março de 2016, Universidade dos Açores.
Resumo:
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
Resumo:
QuEChERS method was evaluated for extraction of 16 PAHs from fish samples. For a selective measurement of the compounds, extracts were analysed by LC with fluorescence detection. The overall analytical procedure was validated by systematic recovery experiments at three levels and by using the standard reference material SRM 2977 (mussel tissue). The targeted contaminants, except naphthalene and acenaphthene, were successfully extracted from SRM 2977 with recoveries ranging from 63.5–110.0% with variation coefficients not exceeding 8%. The optimum QuEChERS conditions were the following: 5 g of homogenised fish sample, 10 mL of ACN, agitation performed by vortex during 3 min. Quantification limits ranging from 0.12– 1.90 ng/g wet weight (0.30–4.70 µg/L) were obtained. The optimized methodology was applied to assess the safety concerning PAHs contents of horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), sardine (Sardina pilchardus) and farmed seabass (Dicentrarchus labrax). Although benzo(a)pyrene, the marker used for evaluating the carcinogenic risk of PAHs in food, was not detected in the analysed samples (89 individuals corresponding to 27 homogenized samples), the overall mean concentration ranged from 2.52 l 1.20 ng/g in horse mackerel to 14.6 ± 2.8 ng/ g in farmed seabass. Significant differences were found between the mean PAHs concentrations of the four groups.
Resumo:
A multiresidue approach using microwave-assisted extraction and liquid chromatography with photodiode array detection was investigated for the determination of butylate, carbaryl, carbofuran, chlorpropham, ethiofencarb, linuron,metobromuron, and monolinuron in soils. The critical parameters of the developed methodology were studied. Method validation was performed by analyzing freshly and aged spiked soil samples. The recoveries and relative standard deviations reached using the optimized conditions were between 77.0 ± 0.46% and 120 ± 2.9% except for ethiofencarb (46.4 ± 4.4% to 105 ± 1.6%) and butylate (22.1 ± 7.6% to 49.2 ± 11%). Soil samples from five locations of Portugal were analysed.
Resumo:
A square-wave voltammetric (SWV) method using a hanging mercury drop electrode (HMDE) has been developed for determination of the herbicide molinate in a biodegradation process. The method is based on controlled adsorptive accumulation of molinate for 10 s at a potential of -0.8 V versus AgCl/Ag. An anodic peak, due to oxidation of the adsorbed pesticide, was observed in the cyclic voltammogram at ca. -0.320 V versus AgCl/Ag; a very small cathodic peak was also detected. The SWV calibration plot was established to be linear in the range 5.0x10-6 to 9.0x10-6 mol L-1; this corresponded to a detection limit of 3.5x10-8 mol L-1. This electroanalytical method was used to monitor the decrease of molinate concentration in river waters along a biodegradation process using a bacterial mixed culture. The results achieved with this voltammetric method were compared with those obtained by use of a chromatographic method (HPLC–UV) and no significant statistical differences were observed.
Resumo:
The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. To assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image to those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, we compare several candidate combiners with respect to their performance in the visual localization task. A deeper insight into the potential of the sum and product combiners is provided by testing two extensions of these algebraic rules: threshold and weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance. The voting method, whilst competitive to the algebraic rules in their standard form, is shown to be outperformed by both their modified versions.
Resumo:
We study the cosmological evolution of asymmetries in the two-Higgs doublet extension of the Standard Model, prior to the electroweak phase transition. If Higgs flavour-exchanging interactions are sufficiently slow, then a relative asymmetry among the Higgs doublets corresponds to an effectively conserved quantum number. Since the magnitude of the Higgs couplings depends on the choice of basis in the :Higgs doublet space, we attempt to formulate basis-independent out-of-equilibrium conditions. We show that an initial asymmetry between the fliggs scalars, which could be generated by GP violation in the :Higgs sector, will be transformed into a baryon asymmetry by the sphalerons, without the need of B - L violation. This novel mechanism of baryogenesis through (split) Higgsogenesis is exemplified with simple scenarios based on the out-of-equilibrium decay of heavy singlet scalar fields into the illiggs doublets.
Resumo:
A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p’-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.
Resumo:
A SPME-GC-MS/MS method for the determination of eight organophosphorus pesticides (azinphos-methyl, chlorpyriphos, chlorpyriphos-methyl, diazinon, fenitrothion, fenthion, malathion, and methidathion) in still and fortified wine was developed. The extraction procedure is simple, solvent free, and without any sample pretreatment. Limits of detection (LOD) and quantitation (LOQ) values in the range 0.1–14.3 lg/L and 0.2–43.3 lg/L, respectively, were obtained. The LOQ values are below the maximum residue levels (MRLs) established by European Regulation for grapes, with the exception of methidathion. Coefficients of correlation (R2) higher than 0.99 were obtained for the majority of the pesticides, in all different wines analyzed.
Resumo:
Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.