986 resultados para role of economics
Resumo:
Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.
Resumo:
Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.
Resumo:
T lymphocyte-mediated pathogenesis is common to a variety of enteropathies, including giardiasis, cryptosporidiosis, bacterial enteritis, celiac's disease, food anaphylaxis, and Crohn's disease. In giardiasis as well as in these other disorders, a diffuse loss of microvillous brush border, combined or not with villus atrophy, is responsible for disaccharidase insufficiencies and malabsorption of electrolytes, nutrients, and water, which ultimately cause diarrheal symptoms. Other mucosal changes may include crypt hyperplasia and increased infiltration of intra-epithelial lymphocytes. Recent studies using models of giardiasis have shed new light on the immune regulation of these abnormalities. Indeed, experiments using an athymic mouse model of infection have found that these epithelial injuries were T cell-dependent. Findings from further research indicate that that the loss of brush border surface area, reduced disaccharidase activities, and increase crypt-villus ratios are mediated by CD8+ T cells, whereas both CD8+ and CD4+ small mesenteric lymph node T cells regulate the influx of intra-epithelial lymphocytes. Future investigations need to characterize the CD8+ T cell signaling cascades that ultimately lead to epithelial injury and malfunction in giardiasis and other malabsorptive disorders of the intestine.
Resumo:
The symptomatic phases of many inflammatory diseases are characterized by migration of large numbers of neutrophils (PMN) across a polarized epithelium and accumulation within a lumen. For example, acute PMN influx is common in diseases of the gastrointestinal system (ulcerative colitis, Crohn's disease, bacterial enterocolitis, gastritis), hepatobiliary system (cholangitis, acute cholecystitis), respiratory tract (bronchial pneumonia, bronchitis, cystic fibrosis, bronchiectasis), and urinary tract (pyelonephritis, cystitis). Despite these observations, the molecular basis of leukocyte interactions with epithelial cells is incompletely understood. In vitro models of PMN transepithelial migration typically use N-formylated bacterial peptides such as fMLP in isolation to drive human PMNs across epithelial monolayers. However, other microbial products such as lipopolysaccharide (LPS) are major constituents of the intestinal lumen and have potent effects on the immune system. In the absence of LPS, we have shown that transepithelial migration requires sequential adhesive interactions between the PMN beta2 integrin CD11b/CD18 and JAM protein family members. Other epithelial ligands appear to be abundantly represented as fucosylated proteoglycans. Further studies indicate that the rate of PMN migration across mucosal surfaces can be regulated by the ubiquitously expressed transmembrane protein CD47 and microbial-derived factors, although many of the details remain unclear. Current data suggests that Toll-like receptors (TLR), which recognize specific pathogen-associated molecular patterns (PAMPs), are differentially expressed on both leukocytes and mucosal epithelial cells while serving to modulate leukocyte-epithelial interactions. Exposure of epithelial TLRs to microbial ligands has been shown to result in transcriptional upregulation of inflammatory mediators whereas ligation of leukocyte TLRs modulate specific antimicrobial responses. A better understanding of these events will hopefully provide new insights into the mechanisms of epithelial responses to microorganisms and ideas for therapies aimed at inhibiting the deleterious consequences of mucosal inflammation.
Resumo:
Queens and workers in social insect colonies can differ in reproductive goals such as colony-level sex allocation and production of males by workers. That the presence of queen(s) often seems to affect worker behaviour in situations of potential conflict has given rise to the idea of queen control over reproduction. In small colonies queen control is possible via direct aggression against workers, but in large colonies queens cannot be effectively aggressive towards all the workers. This, plus evidence that queen-produced chemicals affect worker behaviour, has led to the conclusion that physical intimidation has been replaced by pheromonal queen control, whereby queen(s) chemically manipulate workers into behaving in ways that increase the queen's fitness at the worker's expense. It is argued in this paper, however, that pheromonal queen control has never conclusively been demonstrated and is evolutionarily difficult to justify. Proposed examples of pheromonal control are more likely to be honest signals, with workers' responses increasing their own inclusive fitness. A series of experimental and field studies in which positive results would give prima facie evidence for pheromonal queen control is suggested. Finally, three terms are defined: (1) pheromonal queen control for workers or subordinate queens being chemically manipulated into acting against their own best interests; (2) pheromonal queen signal for situations where workers or subordinate queens react to queen pheromones in ways that increase their, and possibly the queens', inclusive fitness; and (3) pheromonal queen effect where changes in the workers' or subordinate queens' behaviour have an unknown consequence on their inclusive fitness.
Resumo:
The plasma concentrations of alpha 1-acid glycoprotein (AAG), albumin, triglycerides, cholesterol, and total proteins, as well as the plasma binding of racemic, d-methadone, and l-methadone were measured in 45 healthy subjects. The AAG phenotypes and the concentrations of AAG variants were also determined. The measured free fractions for racemic, d-methadone, and l-methadone were, respectively, 12.7% +/- 3.3%, 10.0% +/- 2.9%, and 14.2% +/- 3.2% (mean +/- SD). A significant correlation was obtained between the binding ratio (B/F) for dl-methadone and the total AAG concentration (r = 0.724; p less than 0.001). A multiple stepwise regression analysis showed that AAG was the main explanatory variable for the binding of the racemate. When concentrations of AAG variants were considered, a significant correlation was obtained between the binding ratio of dl-methadone and orosomucoid2 A concentration (r = 0.715; p less than 0.001), a weak correlation between dl-methadone and orosomucoid1 S concentration (r = 0.494; p less than 0.001), and no correlation between dl-methadone and orosomucoid1 F1 concentration (r = 0.049; not significant). Similar findings were obtained with the enantiomers. This study shows the importance of considering not only total AAG but also concentrations of AAG variants when measuring the binding of methadone and possibly of other drugs in plasma.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Chemokines are a superfamily of low-molecular-weight cytokines that were initially described for their chemoattractant activity. It is now clear chemokines have several other activities that modulate immune processes. More than 50 chemokines ligands and at least 19 receptors have been described to date. Depending on the number of N-terminal cysteine residues, chemokines are grouped in the subfamilies CXC, CC, C or CX3C. A growing body of evidence suggests a role for chemokines in the pathogenesis of several inflammatory diseases. Our studies involving mice and humans infected with Schistosoma mansoni suggest an important role of the chemokine CCL3 and its receptors (CCR1 and CCR5) in the pathogenesis of severe schistosomiasis. We suggest that the differential activation of CCR1 or CCR5 during the course of schistosomiasis may dictate the outcome of the disease.
Resumo:
OBJECTIVE: Data about the consequences of laparoscopic adjustable gastric banding (LAGB) on phospho-calcic and bone metabolism remain scarce. SUBJECTS: We studied a group of 37 obese premenopausal women (age: 24-52 y; mean BMI = 43.7 kg/m2) who underwent LAGB. METHODS: Serum calcium, phosphate, alkaline phosphatase, parathormone (PTH), vitamin D3, serum C-telopeptides, IGFBP-3 and IGF-1 were measured at baseline, 6, 12, 18 and 24 months after surgery. Body composition, bone mineral content (BMC) and density (BMD) were measured using dual-X-ray absorptiometry (DXA) at baseline, 6, 12 and 24 months after surgery. RESULTS: There was no clinically significant decrease of calcemia; PTH remained stable. Serum telopeptides increased by 100% (P < 0.001) and serum IGFBP-3 decreased by 16% (P < 0.001) during the first 6 months, and then stabilized, whereas IGF-1 remained stable over the 2 y. BMC and BMD decreased, especially at the femoral neck; this decrease was significantly correlated with the decrease of waist and hip circumference. CONCLUSIONS: We concluded that there was no evidence of secondary hyperparathyroidism 24 months after LAGB. The observed bone resorption could be linked to the decrease of IGFBP-3, although this decrease could be attributable to other confounding factors. Serum telopeptides seem to be a reliable marker of bone metabolism after gastric banding. DXA must be interpreted cautiously during major weight loss, because of the artefacts caused by the important variation of fat tissue after LAGB.
Resumo:
Prostacyclin and its mimetics are used therapeutically for the treatment of pulmonary hypertension. These drugs act via cell surface prostacyclin receptors (IP receptors); however, some of them can also activate the nuclear receptor peroxisome proliferator-activated receptor beta (PPARbeta). We examined the possibility that PPARbeta is a therapeutic target for the treatment of pulmonary hypertension. Using the newly approved (for pulmonary hypertension) prostacyclin mimetic treprostinil sodium, reporter gene assays for PPARbeta activation and measurement of lung fibroblast proliferation were analyzed. Treprostinil sodium was found to activate PPARbeta in reporter gene assays and to inhibit proliferation of human lung fibroblasts at concentrations consistent with an effect on PPARs but not on IP receptors. The effects of treprostinil sodium on human lung cell proliferation are mimicked by those of the highly selective PPARbeta ligand GW0742. There are no receptor antagonists for PPARbeta or for IP receptors, but by using lung fibroblasts cultured from mice lacking PPARbeta (PPARbeta-/-) or IP (IP-/-), we demonstrate that the antiproliferative effects of treprostinil sodium are mediated by PPARbeta and not IP in lung fibroblasts. These observations suggest that some of the local, longer-term benefits of treprostinil sodium on reducing the remodeling associated with pulmonary hypertension may be mediated by PPARbeta. This study is the first to identify PPARbeta as a potential therapeutic target for the treatment of pulmonary hypertension, which is important because orally active PPARbeta ligands have been developed for the treatment of dyslipidemia.