948 resultados para nonlinear sigma model
Resumo:
In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.
Resumo:
The development of a multibody model of a motorbike engine cranktrain is presented in this work, with an emphasis on flexible component model reduction. A modelling methodology based upon the adoption of non-ideal joints at interface locations, and the inclusion of component flexibility, is developed: both are necessary tasks if one wants to capture dynamic effects which arise in lightweight, high-speed applications. With regard to the first topic, both a ball bearing model and a journal bearing model are implemented, in order to properly capture the dynamic effects of the main connections in the system: angular contact ball bearings are modelled according to a five-DOF nonlinear scheme in order to grasp the crankshaft main bearings behaviour, while an impedance-based hydrodynamic bearing model is implemented providing an enhanced operation prediction at the conrod big end locations. Concerning the second matter, flexible models of the crankshaft and the connecting rod are produced. The well-established Craig-Bampton reduction technique is adopted as a general framework to obtain reduced model representations which are suitable for the subsequent multibody analyses. A particular component mode selection procedure is implemented, based on the concept of Effective Interface Mass, allowing an assessment of the accuracy of the reduced models prior to the nonlinear simulation phase. In addition, a procedure to alleviate the effects of modal truncation, based on the Modal Truncation Augmentation approach, is developed. In order to assess the performances of the proposed modal reduction schemes, numerical tests are performed onto the crankshaft and the conrod models in both frequency and modal domains. A multibody model of the cranktrain is eventually assembled and simulated using a commercial software. Numerical results are presented, demonstrating the effectiveness of the implemented flexible model reduction techniques. The advantages over the conventional frequency-based truncation approach are discussed.
Resumo:
The Thermodynamic Bethe Ansatz analysis is carried out for the extended-CP^N class of integrable 2-dimensional Non-Linear Sigma Models related to the low energy limit of the AdS_4xCP^3 type IIA superstring theory. The principal aim of this program is to obtain further non-perturbative consistency check to the S-matrix proposed to describe the scattering processes between the fundamental excitations of the theory by analyzing the structure of the Renormalization Group flow. As a noteworthy byproduct we eventually obtain a novel class of TBA models which fits in the known classification but with several important differences. The TBA framework allows the evaluation of some exact quantities related to the conformal UV limit of the model: effective central charge, conformal dimension of the perturbing operator and field content of the underlying CFT. The knowledge of this physical quantities has led to the possibility of conjecturing a perturbed CFT realization of the integrable models in terms of coset Kac-Moody CFT. The set of numerical tools and programs developed ad hoc to solve the problem at hand is also discussed in some detail with references to the code.
Resumo:
The new stage of the Mainz Microtron, MAMI, at the Institute for Nuclear Physics of the Johannes Gutenberg-University, operational since 2007, allows open strangeness experiments to be performed. Covering the lack of electroproduction data at very low Q2, p(e,K+)Lambda and p(e,K+)Sigma0, reactions have been studied at Q^2 = 0.036(GeV/c)^2 andrnQ^2 = 0.05(GeV=c)^2 in a large angular range. Cross-section at W=1.75rnGeV will be given in angular bins and compared with the predictions of Saclay-Lyon and Kaon Maid isobaric models. We conclude that the original Kaon-Maid model, which has large longitudinal couplings of the photon to nucleon resonances, is unphysical. Extensive studies for the suitability of silicon photomultipliers as read out devices for a scintillating fiber tracking detector, with potential applications in both positive and negative arms of the spectrometer, will be presented as well.
Resumo:
The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop.
Resumo:
Questa tesi verte sullo studio di un modello a volatilità stocastica e locale, utilizzato per valutare opzioni esotiche nei mercati dei cambio. La difficoltà nell'implementare un modello di tal tipo risiede nella calibrazione della leverage surface e uno degli scopi principali di questo lavoro è quello di mostrarne la procedura.
Resumo:
Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.
Resumo:
In this work we study a polyenergetic and multimaterial model for the breast image reconstruction in Digital Tomosynthesis, taking into consideration the variety of the materials forming the object and the polyenergetic nature of the X-rays beam. The modelling of the problem leads to the resolution of a high-dimensional nonlinear least-squares problem that, due to its nature of inverse ill-posed problem, needs some kind of regularization. We test two main classes of methods: the Levenberg-Marquardt method (together with the Conjugate Gradient method for the computation of the descent direction) and two limited-memory BFGS-like methods (L-BFGS). We perform some experiments for different values of the regularization parameter (constant or varying at each iteration), tolerances and stop conditions. Finally, we analyse the performance of the several methods comparing relative errors, iterations number, times and the qualities of the reconstructed images.
Resumo:
Currently, a variety of linear and nonlinear measures is in use to investigate spatiotemporal interrelation patterns of multivariate time series. Whereas the former are by definition insensitive to nonlinear effects, the latter detect both nonlinear and linear interrelation. In the present contribution we employ a uniform surrogate-based approach, which is capable of disentangling interrelations that significantly exceed random effects and interrelations that significantly exceed linear correlation. The bivariate version of the proposed framework is explored using a simple model allowing for separate tuning of coupling and nonlinearity of interrelation. To demonstrate applicability of the approach to multivariate real-world time series we investigate resting state functional magnetic resonance imaging (rsfMRI) data of two healthy subjects as well as intracranial electroencephalograms (iEEG) of two epilepsy patients with focal onset seizures. The main findings are that for our rsfMRI data interrelations can be described by linear cross-correlation. Rejection of the null hypothesis of linear iEEG interrelation occurs predominantly for epileptogenic tissue as well as during epileptic seizures.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.
Resumo:
Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.
Resumo:
Four papers, written in collaboration with the author’s graduate school advisor, are presented. In the first paper, uniform and non-uniform Berry-Esseen (BE) bounds on the convergence to normality of a general class of nonlinear statistics are provided; novel applications to specific statistics, including the non-central Student’s, Pearson’s, and the non-central Hotelling’s, are also stated. In the second paper, a BE bound on the rate of convergence of the F-statistic used in testing hypotheses from a general linear model is given. The third paper considers the asymptotic relative efficiency (ARE) between the Pearson, Spearman, and Kendall correlation statistics; conditions sufficient to ensure that the Spearman and Kendall statistics are equally (asymptotically) efficient are provided, and several models are considered which illustrate the use of such conditions. Lastly, the fourth paper proves that, in the bivariate normal model, the ARE between any of these correlation statistics possesses certain monotonicity properties; quadratic lower and upper bounds on the ARE are stated as direct applications of such monotonicity patterns.
Resumo:
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due tp the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft’s range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method’s error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
Resumo:
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.