973 resultados para enteric pathogens
Resumo:
Some sites of extrapulmonary tuberculosis and focal complications of brucellosis are very difficult to differentiate clinically, radiologically, and even histopathologically. Conventional microbiological methods for the diagnosis of extrapulmonary tuberculosis and complicated brucellosis not only lack adequate sensitivity, they are also time consuming, which could lead to an unfavourable prognosis. The aim of this work was to develop a multiplex real-time PCR assay based on SYBR Green I to simultaneously detect Brucella spp and Mycobacterium tuberculosis complex and evaluate the efficacy of the technique with different candidate genes. The IS711, bcsp31 and omp2a genes were used for the identification of Brucella spp and the IS6110, senX3-regX3 and cfp31 genes were targeted for the detection of the M. tuberculosis complex. As a result of the different combinations of primers, nine different reactions were evaluated. A test was defined as positive only when the gene combinations were capable of co-amplifying both pathogens in a single reaction tube and showed distinguishable melting temperatures for each microorganism. According to the melting analysis, only three combinations of amplicons (senX3-regX3+bcsp31, senX3-regX3+IS711 and IS6110+IS711) were visible. Detection limits of senX3-regX3+bcsp31 and senX3-regX3+IS711 were of 2 and 3 genome equivalents for M. tuberculosis complex and Brucella while for IS6110+IS711 they were of 200 and 300 genome equivalents, respectively. The three assays correctly identified all the samples, showing negative results for the control patients. The presence of multicopy elements and GC content were the components most influencing the efficiency of the test; this should be taken into account when designing a multiplex-based SYBR Green I assay. In conclusion, multiplex real time PCR assays based on the targets senX3-regX3+bcsp31 and senX3-regX3+IS711 using SYBR Green I are highly sensitive and reproducible. This may therefore be a practical approach for the rapid differential diagnosis between extrapulmonary tuberculosis and complicated brucellosis.
Resumo:
Despite the increasing importance of Enterococcus as opportunistic pathogens, their virulence factors are still poorly understood. This study determines the frequency of virulence factors in clinical and commensal Enterococcus isolates from inpatients in Porto Alegre, Brazil. Fifty Enterococcus isolates were analysed and the presence of the gelE, asa1 and esp genes was determined. Gelatinase activity and biofilm formation were also tested. The clonal relationships among the isolates were evaluated using pulsed-field gel electrophoresis. The asa1, gelE and esp genes were identified in 38%, 60% and 76% of all isolates, respectively. The first two genes were more prevalent in Enterococcus faecalis than in Enterococcus faecium, as was biofilm formation, which was associated with gelE and asa1 genes, but not with the esp gene. The presence of gelE and the activity of gelatinase were not fully concordant. No relationship was observed among any virulence factors and specific subclones of E. faecalis or E. faecium resistant to vancomycin. In conclusion, E. faecalis and E. faecium isolates showed significantly different patterns of virulence determinants. Neither the source of isolation nor the clonal relationship or vancomycin resistance influenced their distribution.
Resumo:
We aimed to evaluate whether the occurrence of cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii, has implications in the immunodiagnosis of paracoccidioidomycosis (PCM). Small quantities of the antigen gp43 were found in culture filtrates of P. lutzii strains and this molecule appeared to be more variable within P. lutzii because the synonymous-nonsynonymous mutation rate was lower, indicating an evolutionary process different from that of the remaining genotypes. The production of gp43 also varied between isolates belonging to the same species, indicating that speciation events are important, but not sufficient to fully explain the diversity in the production of this antigen. The culture filtrate antigen AgEpm83, which was obtained from a PS3 isolate, showed large quantities of gp43 and reactivity by immunodiffusion assays, similar to the standard antigen (AgB-339) from an S1 isolate. Furthermore, AgEpm83 was capable of serologically differentiating five serum samples from patients from the Botucatu and Jundiaí regions. These patients had confirmed PCM but, were non-reactive to the standard antigen, thus demonstrating an alternative for serological diagnosis in regions in which S1 and PS2 occur. We also emphasise that it is not advisable to use a single antigen preparation to diagnose PCM, a disease that is caused by highly diverse pathogens.
Resumo:
Levofloxacin is the L isomer of ofloxacin, a racemic mixture in which the L stereochemical form carries the antimicrobial activity. Levofloxacin is more active than former quinolones against gram-positive bacteria, making it potentially useful against such pathogens. In this study, levofloxacin was compared to ciprofloxacin, flucloxacillin, and vancomycin for the treatment of experimental endocarditis due to two methicillin-susceptible Staphylococcus aureus (MSSA) and two methicillin-resistant S. aureus (MRSA) isolates. The four test organisms were susceptible to ciprofloxacin, the levofloxacin MICs for the organisms were low (0.12 to 0.25 mg/liter), and the organisms were killed in vitro by drug concentrations simulating both the peak and trough levels achieved in human serum (5 and 0.5 mg/liter, respectively) during levofloxacin therapy. Rats with aortic endocarditis were treated for 3 days. Antibiotics were injected with a programmable pump to simulate the kinetics of either levofloxacin (350 mg orally once a day), ciprofloxacin (750 mg orally twice a day), flucloxacillin (2 g intravenously four times a day), or vancomycin (1 g intravenously twice a day). Levofloxacin tended to be superior to ciprofloxacin in therapeutic experiments (P = 0.08). More importantly, levofloxacin did not select for resistance in the animals, in contrast to ciprofloxacin. The lower propensity of levofloxacin than ciprofloxacin to select for quinolone resistance was also clearly demonstrated in vitro. Finally, the effectiveness of this simulation of oral levofloxacin therapy was at least equivalent to that of standard treatment for MSSA or MRSA endocarditis with either flucloxacillin or vancomycin. This is noteworthy, because oral antibiotics are not expected to succeed in the treatment of severe staphylococcal infections. These good results obtained with animals suggest that levofloxacin might deserve consideration for further study in the treatment of infections due to ciprofloxacin-susceptible staphylococci in humans.
Resumo:
There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.
Resumo:
Després d’aplicar alguns tractaments d’elaboració i conservació als aliments, queden bacteris lesionats. Aquests bacteris perden la capacitat de créixer en els medis de cultiu selectiu convencionals, de manera que se’n subestima el recompte. Malgrat això, poden recuperar-se als aliments i suposar un risc per la salut, ja que alguns encara poden mantenir activitat metabòlica i integritat estructural. En aquest projecte, es van optimitzar protocols de preparació de mostres per citometria de flux (CF) per avaluar l’estat fisiològic de patògens alimentaris (Escherichia coli O157:H7, Salmonella Enteritidis i Listeria monocytogenes) sotmesos a estrès. Es van estudiar principalment dos paràmetres fisiològics: la integritat de membrana, mitjançant iodur de propidi i fluorocroms de la família SYTO; i l’activitat respiratòria, per la reducció intracel•lular d’una sal de tetrazole, el CTC. En primer lloc, es van avaluar variables de protocol, com la concentració de colorant, la ràtio entre colorants, la solució de tinció i el temps d’incubació, en mostres control (cèl•lules sanes i mortes). A continuació, els protocols optimitzats es van aplicar a suspensions bacterianes en medi de cultiu que prèviament havien estat sotmeses a estressos físics i fisicoquímics. Durant l’etapa final del projecte, els coneixements adquirits sobre la preparació de mostres per CF es van aplicar a l’anàlisi de mostres de matriu complexa: amanides comercials inoculades amb E. coli O157:H7. Als assajos amb indicadors d’integritat de membrana en suspensions bacterianes sotmeses a estrès, es van poder quantificar cèl•lules amb la membrana parcialment danyada (presumptes cèl•lules lesionades). El recompte de cèl•lules que mantingueren l’activitat respiratòria després de ser sotmeses a estrès va ser superior al que es va obtenir mitjançant recompte en placa convencional, cosa que va evidenciar la presència de cèl•lules actives però no cultivables. La introducció d’estratègies per reduir les interferències provocades per les partícules alimentàries i l’ús d’un anticòs amb marcatge fluorescent va permetre detectar selectivament les cèl•lules d’E. coli O157:H7 i avaluar-ne la integritat de membrana simultàniament. L’anàlisi de cèl•lules bacterianes per CF requereix de la exhaustiva optimització dels protocols, que són específics per cada soca i matriu. Malgrat això, i a diferència del mètode convencional per recompte en placa, ofereix la possibilitat d’obtenir una gran quantitat d’informació sobre el sovint complex estat fisiològic d’una mostra.
Resumo:
Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model.
Resumo:
This review investigates ancient infectious diseases in the Americas dated to the pre-colonial period and considers what these findings can tell us about the history of the indigenous peoples of the Americas. It gives an overview, but focuses on four microbial pathogens from this period: Helicobacter pylori, Mycobacterium tuberculosis, Trypanosoma cruzi and Coccidioides immitis, which cause stomach ulceration and gastric cancer, tuberculosis, Chagas disease and valley fever, respectively. These pathogens were selected as H. pylori can give insight into ancient human migrations into the Americas, M. tuberculosis is associated with population density and urban development, T. cruzi can elucidate human living conditions and C. immitis can indicate agricultural development. A range of methods are used to diagnose infectious disease in ancient human remains, with DNA analysis by polymerase chain reaction one of the most reliable, provided strict precautions are taken against cross contamination. The review concludes with a brief summary of the changes that took place after European exploration and colonisation.
Resumo:
Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2’. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.
Resumo:
Two genome-wide association studies for meningococcal disease and tuberculosis identify new loci associated with susceptibility to these infectious diseases. They highlight a role for the acquired and innate immune systems in host control of several human pathogens and demonstrate that denser genotyping platforms and population-specific reference panels are necessary for genetic studies in African populations.
Resumo:
Over the last decades, Candida spp have been responsible for an increasing number of infections, especially in patients requiring intensive care. Knowledge of local epidemiology and analysis of the spread of these pathogens is important in understanding and controlling their transmission. The aim of this study was to evaluate the genetic diversity of 31 Candida albicans and 17 Candida glabrata isolates recovered from intensive care unit patients from the tertiary hospital in Krakow between 2011-2012. The strains were typed by random amplified polymorphic DNA (RAPD) polymerase chain reaction using five primers (CD16AS, HP1247, ERIC-2, OPE-3 and OPE-18). The results of the present investigation revealed a high degree of genetic diversity among the isolates. No clonal relationship was found among the C. albicans strains, whereas two C. glabrata isolates were identical. The source of Candida infection appeared to be mostly endogenous; however, the presence of two clonal C. glabrata strains suggested the possibility of cross-transmission of these pathogens. Our study confirmed the high discriminatory power of the RAPD technique in the molecular typing of Candida clinical isolates. This method may be applied to the evaluation of transmission routes of pathogenic fungi on a local level.
Resumo:
Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell-mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].
Resumo:
Natural killer (NK) cells are capable of directly recognizing pathogens, pathogen-infected cells, and transformed cells. NK cells recognize target cells using approximately 100 germ-line encoded receptors, which display activating or inhibitory function. NK cell activation usually requires the engagement of more than one receptor, and these may contribute distinct signaling inputs that are required for the firm adhesion of NK cells to target cells, polarization, and the release of cytotoxic granules, as well as the production of cytokines. In this article we discuss receptor-mediated mechanisms that counteract NK cell activation. The distinct intracellular inhibitory signaling pathways and how they can dominantly interfere with NK cell activation signaling events are discussed first. In addition, mechanisms by which inhibitory receptors modulate cellular activation at the level of receptor-ligand interactions are described. Receptor-mediated inhibition of NK cell function serves three main purposes: ensuring tolerance of NK cells to normal cells, enabling NK cell responses to aberrant host cells that have lost an inhibitory ligand, and, finally, allowing the recognition of certain pathogens that do not express inhibitory ligands.