994 resultados para digital signatures
Resumo:
The advent of digital microfluidic lab-on-a-chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. Moreover, digital microfluidics is being applied in other areas such as airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In most diagnostic and chemical-detection applications, a key challenge is the preparation of the analyte for presentation to the on-chip detection system. Thus, in diagnostics, raw physiological samples must be introduced onto the chip and then further processed by lysing blood cells and extracting DNA. For massively parallel DNA sequencing, sample preparation can be performed off chip, but the synthesis steps must be performed in a sequential on-chip format by automated control of buffers and nucleotides to extend the read lengths of DNA fragments. In airborne particulate-sampling applications, the sample collection from an air stream must be integrated into the LoC analytical component, which requires a collection droplet to scan an exposed impacted surface after its introduction into a closed analytical section. Finally, in tissue-engineering applications, the challenge for LoC technology is to build high-resolution (less than 10 microns) 3D tissue constructs with embedded cells and growth factors by manipulating and maintaining live cells in the chip platform. This article discusses these applications and their implementation in digital-microfluidic LoC platforms. © 2007 IEEE.
Resumo:
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Resumo:
BACKGROUND: Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study's analysis plan. RESULTS: We developed a Bayesian statistical model for the prior probability of phenotype-genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super-track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen-2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non-informative predictors and evaluated the model's ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP's presence in the GC. Further, using data from a genome-wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome-wide scale and improves power to detect associations. CONCLUSIONS: We show how diverse functional annotations can be efficiently combined to create 'functional signatures' that predict the a priori odds of a variant's association to a trait and how these signatures can be integrated into a standard genome-wide-scale association analysis, resulting in improved power to detect truly associated variants.
Resumo:
CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.
Resumo:
Using scientific methods in the humanities is at the forefront of objective literary analysis. However, processing big data is particularly complex when the subject matter is qualitative rather than numerical. Large volumes of text require specialized tools to produce quantifiable data from ideas and sentiments. Our team researched the extent to which tools such as Weka and MALLET can test hypotheses about qualitative information. We examined the claim that literary commentary exists within political environments and used US periodical articles concerning Russian literature in the early twentieth century as a case study. These tools generated useful quantitative data that allowed us to run stepwise binary logistic regressions. These statistical tests allowed for time series experiments using sea change and emergency models of history, as well as classification experiments with regard to author characteristics, social issues, and sentiment expressed. Both types of experiments supported our claim with varying degrees, but more importantly served as a definitive demonstration that digitally enhanced quantitative forms of analysis can apply to qualitative data. Our findings set the foundation for further experiments in the emerging field of digital humanities.
Resumo:
Objectives: One third of the world population is considered latently infected with Mycobacterium tuberculosis(LTBI) and sterilizing this reservoir of bacteria that may reactivate is required for tuberculosis (TB) elimination. Thegroup of individuals with LTBI is heterogeneous with some of them being more at risk to develop TB disease thanothers. Improved diagnosis of subjects with LTBI is needed, allowing to differentiate subjects with LTBI from thosewith active TB, and to select among LTBI subjects those who are more at risk to develop active TB. We havecharacterized at the cellular level both the quantitative and qualitative T cell responses to different mycobacterialantigens in selected populations of infected subjects in order to identify new biomarkers that could help to identify M.tuberculosis-infected subjects and to stratify them in risk groups for reactivation of the infection.Methods: Lymphoblast frequencies and cytokine production (IFN-γ, TNF-α, IL-2) among CD4+ and CD8+ T cellswere analyzed by flow cytometry after in vitro stimulation with the latency antigen heparin-binding haemagglutinin(HBHA) or early-secreted antigen Target-6 (ESAT-6) of peripheral blood mononuclear cells from clinically wellcharacterized M. tuberculosis-infected humans (28 LTBI, 22 TB disease,12 controls). The LTBI group definedaccording to the Center for Disease Control guidelines was subdivided into QuantiFERON-TB Gold in-Tube (QFT)positive and negative subgroups.Results: Similar to TB patients, QFT+ LTBI subjects had higher proportions of HBHA-induced TNF-αsingle+ CD4+lymphocytes than QFT- LTBI subjects (p<0.05). Compared to LTBI subjects, TB patients had higher frequencies ofESAT-6-induced CD8+ lymphoblasts (p<0.001), higher proportions of ESAT-6-induced IFN-γ+TNF-α+ CD4+ Tlymphocytes (p<0.05), and lower proportions of HBHA-induced IFN-γ+TNF-α+IL-2+ (p<0.05) CD4+ T lymphocytes.Conclusions: These data provide new biomarkers to discriminate active TB from LTBI, and more interestingly,help to identify LTBI subjects with increased likelihood to develop TB disease.
Resumo:
Los estudiantes de enseñanza media se enfrentan al uso e interpretación de los parámetros en funciones polinomiales, lugares geométricos y expresiones algebraicas en general. Este hecho conduce a la necesidad no sólo de diferenciar los parámetros de otro tipo de literales como variables o incógnitas, sino también dar un sentido de uso a los mismos con la finalidad de agrupar los objetos matemáticos en entidades más generales como son las familias de funciones. El presente taller tiene como objetivo mostrar la influencia que puede tener el uso de un recurso tecnológico dinámico en la comprensión de esta polisemia de las literales, así como en la optimización de la ideas como puede ser la generalización.
Resumo:
O estudo é uma pesquisa-ação, na área da Informática na Educação Matemática, sobre a forma de aprender a aprender cooperativamente, segundo os Estudos Sociológicos de Piaget, no espaço de aprendizagem digital da Matemática, desenvolvida no IFRS – Osório, em 2011 e 2012, com 60 estudantes do ensino médio técnico em informática. A questão central é como analisar e compreender o processo de aprendizagem cooperativa dos conceitos de Matemática neste espaço. A definição deste espaço e de aprendizagem cooperativa é resultado desta pesquisa. Além disso, demonstra-se a construção dos conceitos de Matemática, e a mobilização dos estudantes em aprender incorporando-se as tecnologias digitais online às aulas de Matemática, sob a autonomia e responsabilidade de cada estudante e/ou de seu grupo.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
En este curso corto utilizamos distintas aplicaciones de geometría dinámica para realizar construcciones geométricas en el modelo de Poincaré para geometría hiperbólica con el propósito de investigar y determinar la naturaleza de algunos teoremas de geometría para la enseñanza secundaria y superior. De esta forma clasificamos algunos de los teoremas de geometría plana como neutrales, estrictamente euclidianas o estrictamente hiperbólicos.
Resumo:
It is now possible to use powerful general purpose computer architectures to support post-production of both video and multimedia projects. By devising a suitable portable software architecture and using high-speed networking in an appropriate manner, a system has been constructed where editors are no longer tied to a specific location. New types of production, such as multi-threaded interactive video, are supported. Editors may also work remotely where very high speed network connection is not currently provided. An object-oriented database is used for the comprehensive cataloging of material and to support automatic audio/video object migration and replication. Copyright © 1997 by the Society of Motion Picture and Television Engineers, Inc.
Resumo:
Digital Forestry has been proposed as “the science, technology, and art of systematically acquiring, integrating, analyzing, and applying digital information to support sustainable forests.” Although rooted in traditional forestry disciplines, Digital Forestry draws from a host of other fields that, in the past few decades, have become important for implementing the concept of forest ecosystem management and the principle of sustainable forestry. Digital Forestry is a framework that links all facets of forestry information at local, national, and global levels through an organized digital network. It is anticipated that a new set of principles will be established when practicing Digital Forestry concept for the evolution of forestry education, research, and practices as the 21st century unfolds.