966 resultados para amino acid protection
Resumo:
It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with L-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 220%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective: Hantaviruses are rodent-borne RNA viruses that have caused hantavirus cardiopulmonary syndrome in several Brazilian regions. In the present study, geographical distribution, seroprevalence, natural host range, and phylogenetic relations of rodent-associated hantaviruses collected from seven counties of Southeastern Brazil were evaluated. Methods: ELISA, RT-PCR and phylogenetic analysis were used in this study. Results: Antibodies to hantavirus were detected in Bolomys lasiurus, Akodon sp. and Oligoryzomys sp., performing an overall seroprevalence of 5.17%. All seropositive rodents were associated with grasslands or woods surrounded by sugar cane fields. Phylogenetic analysis of partial S- and M-segment sequences showed that viral sequences isolated from B. lasiurus specimens clustered with Araraquara virus. However, a sequence from Akodon sp. shared 100% similarity with Argentinian/Chilean viruses based on the partial S- segment amino acid sequence. Conclusion: These results indicate that there are associations between rodent reservoirs and hantaviruses in some regions of Southeastern Brazil, and suggest the existence of additional hantavirus genetic diversity and host ecology in these areas. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We have previously isolated a Lys49 phospholipase A(2) homolog (BaTX) from Bothrops alternatus snake venom using a combination of molecular exclusion chromatography and reverse phase HPLC and shown its ability to cause neuromuscular blockade. In this work, we describe a one-step procedure for the purification of this toxin and provide further details of its neuromuscular activity. The toxin was purified by reverse phase HPLC and its purity and molecular mass were confirmed by SIDS-PAGE, MALDI-TOF mass spectrometry, amino acid analysis and N-terminal sequencing. BaTX (0.007-1.4 mu M) produced time-dependent, irreversible neuromuscular blockade in isolated mouse phrenic nerve-diaphragm and chick biventer cervicis preparations (time to 50% blockade with 0.35 mu M toxin: 58 +/- 4 and 24 +/- 1 min, respectively; n = 3-8; mean +/- S.E.) without significantly affecting the response to direct muscle stimulation. In chick preparations, contractures to exogenous acetylcholine (55 and 110 mu M) or KCl (13.4 mM) were unaltered after complete blockade by all toxin concentrations. These results, which strongly suggested a presynaptic mechanism of action for this toxin, were reinforced by (1) the inability of BaTX to interfere with the carbachol-induced depolarization of the resting membrane, (2) a significant decrease in the frequency and amplitude of miniature end-plate potentials, and (3) a significant reduction (59 +/- 4%, n=12) in the quantal content of the end-plate potentials after a 60 min incubation with the toxin (1.4 mu M). In addition, a decrease in the organ bath temperature from 37 degrees C to 24 degrees C and/or the replacement of calcium with strontium prevented the neuromuscular blockade, indicating a temperature-dependent effect possibly mediated by enzymatic activity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
GABAergic, nitrergic and glutamatergic mechanisms in the PVN on the baseline mean arterial pressure (MAP), heart rate (HR) and on the cardiovascular responses to chemoreflex activation in awake rat were evaluated. Chemoreflex was activated with KCN before and after microinjections into the PVN. Bicuculline into the PVN increased baseline MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (49+/-5 vs 47+/-6 mmHg) or bradicardic (-213+/-23 vs -256+/-42 bpm) responses (n=7). Kynurenic acid into the PVN (n=6) produced no significant changes in the MAP (98+/-3 vs 100+/-3 mmHg), HR (330+/-5 vs 339+/-12 mmHg) or in the pressor (50+/-4 vs 42+/-4 mmHg) and bradicardic (-252+/-4 vs -285+/-16 bpm) responses to chemoreflex. L-NAME into the PVN (n=8) produced increase in the MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (52+/-5 vs 47+/-6 mmHg) or bradicardic (-253+/-19 vs -320+/-25 bpm) responses to chemoreflex. We conclude that GABA(A) and nitric oxide in the PVN are involved in the maintenance of the baseline MAP but not in the modulation of the responses to chemoreflex. The results also show that Glutamate receptors in the PVN are not involved in maintenance of the baseline MAP, HR or in the cardiovascular responses to chemoreflex in awake rats. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Plant-antivenom is a computational Websystem about medicinal plants with anti-venom properties. The system consists of a database of these plants, including scientific publications on this subject and amino acid sequences of active principles from venomous animals. The system relates these data allowing their integration through different search applications. For the development of the system, the first surveys were conducted in scientific literature, allowing the creation of a publication database in a library for reading and user interaction. Then, classes of categories were created, allowing the use of tags and the organization of content. This database on medicinal plants has information such as family, species, isolated compounds, activity, inhibited animal venoms, among others. Provision is made for submission of new information by registered users, by the use of wiki tools. Content submitted is released in accordance to permission rules defined by the system. The database on biological venom protein amino acid sequences was structured from the essential information from National Center for Biotechnology Information (NCBI). Plant-antivenom`s interface is simple, contributing to a fast and functional access to the system and the integration of different data registered on it. Plant-antivenom system is available on the Internet at http://gbi.fmrp.usp.br/plantantivenom.
Resumo:
Protein glycosylation represents one of the most important post-translational events, and is a mean of diversifying a protein without recourse to the genome. The venoms produced by snakes contain an abundance of glycoproteins with N-linked carbohydrates. N-linked glycosylation can ensure the correct folding of important functional domains. Characterization of carbohydrates structures aids in development of human therapeutics by snake venom toxins.
Resumo:
The amino acid R or K at position 333 on the glycoprotein of the rabies virus is considered necessary for virulence in adult mice. Although some exceptions exist, substitution at this position causes expression of a phenotype that is either less pathogenic or non-virulent. To date, such substitutions have only been found in fixed strains of rabies virus. In this study, the authors found 333H, 333N, and 333Q substitutions at this position in rabies virus street strains isolated from non-hematophagous bats in Brazil. These strains showed pathogenicity and lethality on passage using adult mice with the intracerebral route and were confirmed rabies-positive by immunofluorescent assay. This suggests that these strains maintain virulence. Our findings indicate that rabies virus street strains with these substitutions exist in the field and may result in infection cycles.
Resumo:
Insectivorous bats are the main reservoirs of rabies virus (RABV) in various regions of the world. The aims of this study were to (a) establish genealogies for RABV strains from different species of Brazilian insectivorous bats based on the nucleoprotein (N) and glycoprotein (G) genes, (b) investigate specific RABV lineages associated with certain genera of bats and (c) identify molecular markers that can distinguish between these lineages. The genealogic analysis of N and G from 57 RABV strains revealed seven genus-specific clusters related to the insectivorous bats Myotis, Eptesicus, Nyctinomops, Molossus, Tadarida, Histiotus and Lasiurus. Molecular markers in the amino acid sequences were identified which were specific to the seven clusters. These results, which constitute a novel finding for this pathogen, show that there are at least seven independent epidemiological rabies cycles maintained by seven genera of insectivorous bats in Brazil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Rabies virus (RABV) isolates from two species of canids and three species of bats were analyzed by comparing the C-terminal region of the G gene and the G-L intergenic region of the virus genome. Intercluster identities for the genetic sequences of the isolates showed both regions to be poorly conserved. Phylogenetic trees were generated by the neighbor-joining and maximum parsimony methods, and the results were found to agree between the two methods for both regions. Putative amino acid sequences obtained from the G gene were also analyzed, and genetic markers were identified. Our results suggest that different genetic lineages of RABV are adapted to different animal species in Brazil.
Resumo:
The low rates of nonsynonymous evolution observed in natural rabies virus (RABV) isolates are suggested to have arisen in association with the structural and functional constraints operating on the virus protein and the infection strategies employed by RABV within infected hosts to avoid strong selection by the immune response. In order to investigate the relationship between the genetic characteristics of RABV populations within hosts and the virus evolution, the present study examined the genetic heterogeneities of RABV populations within naturally infected dogs and foxes in Brazil, as well as those of bat RABV populations that were passaged once in suckling mice. Sequence analyses of complete RABV glycoprotein (G) genes showed that RABV populations within infected hosts were genetically highly homogeneous whether they were infected naturally or experimentally (nucleotide diversities of 0-0.95 x 10(-3)). In addition, amino acid mutations were randomly distributed over the entire region of the G protein, and the nonsynonymous/synonymous rate ratios (d(N)/d(S)) for the G protein gene were less than 1. These findings suggest that the low genetic diversities of RABV populations within hosts reflect the stabilizing selection operating on the virus, the infection strategies of the virus, and eventually, the evolutionary patterns of the virus. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The complete genome sequence of wild-type rabies virus (RABV) isolated from a wild Brazilian hoary fox (Dusicyon sp.), the BR-Pfx1 isolate, was determined and compared with fixed RABV strains. The genome structure and organization of the BR-Pfx1 isolate were composed of 11,924 nt and included the five standard genes of rhabdoviruses. Sequences of mRNA start and stop signals for transcription were highly conserved among all structural protein genes of the BR-Pfx1 isolate. All amino acid residues in the glycoprotein (G) gene associated with pathogenicity were retained in the BR-Pfx1 isolate, while unique amino acid substitutions were found in antigenic region I of the nucleoprotein gene and III of G. These results suggest that although the standard genome structure and organization of the RABV isolate are common between the BR-Pfx1 isolate and fixed RABV strains, the unique amino acid substitutions in functional sites of the BR-Pfx1 isolate may result in different biological characteristics from fixed RABV strains.
Resumo:
As part of an epidemiological study of infectious bronchitis virus (IBV) in Brazil, 252 samples from IBV-suspect flocks were tested and the IBV-positive samples were analysed by sequencing of hypervariable regions 1 and 2 of the S1 gene. A high prevalence of IBV variants was found and the sequence analysis of 41 samples revealed a high molecular similarity among the Brazilian isolates (from 90.2 to 100% and from 85.3 to 100% nucleotide and amino acid identity, respectively). The Brazilian isolates showed low genetic relationship with Massachusetts (63.4 to 70.7%), European (45.9 to 75.6%), American (49.3 to 76.4%) and other reference serotypes (67.5 to 78.8%). The Brazilian isolates branched into one unique cluster, separate from the reference serotypes used for infectious bronchitis control in other countries. The variants analysed in this work had a high similarity with all previously published Brazilian IBV isolates, suggesting the presence and high prevalence of a unique or predominant genotype circulating in Brazil. In addition, the virus neutralization test showed that the three Brazilian isolates analysed in the present study are antigenically related to one another but are different from the Massachusetts serotype. The present study shows that IBVs of a unique genotype can be associated with different clinical diseases, and that low genetic variation was detected in this genotype over a long period of time. The molecular characterization of the Brazilian variants isolated from 2003 to 2009 from different geographic regions of the country shows that only one predominant genotype is widespread in the Brazilian territory, denominated in this study as BR-I genotype.
Resumo:
At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain.