951 resultados para Woods-Gerry Gallery
Resumo:
The students academic performance is a key aspect for all agents involved in a higher education quality program. However, there is no unanimity on how to measure it. Some professionals choose assessing only cognitive aspects while others lean towards assessing the acquisition of certain skills. The need to train increasingly adapted professionals in order to respond to the companies’ demands and being able to compete internationally in a global labour market requires a kind of training that goes beyond memorizing. Critical and logical thinking are amongst written language skills demanded in the field of Social Sciences. The objective of this study is to empirically demonstrate the impact of voluntary assignments on the academic performance of students. Our hypothesis is that students who complete high quality voluntary assignments are those more motivated and, therefore, those with higher grades. An experiment with students from the "Financial Accounting II" during the academic year of 2012/13 at the Business and Economics School of the UCM was carried out. A series of voluntary assessments involving the preparation of accounting essays were proposed in order to develop skills and competencies as a complement to the lessons included in the curriculum of the subject. At the end of the course, the carrying-out or not of the essay together with its critical, reflective quality and style, were compared. Our findings show a relationship between the voluntarily presented papers of quality and the final grade obtained throughout the course. These results show that the students intrinsic motivation is a key element in their academic performance. On the other hand, the teachers role focuses on being a motivating element through the learning process.
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.
Resumo:
Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.
Resumo:
Whispering gallery mode particle sensing experiments are commonly performed with solid resonators, whereby the sensing volume is limited to the weak evanescent tail of the mode near the resonator surface. In this work we discuss in detail the sensitivity enhancements achievable in liquid droplet resonators wherein the stronger internal fields and convenient means of particle delivery can be exploited. Asymptotic formulae are derived for the relative resonance shift, line broadening and mode splitting of TE and TM modes in liquid droplet resonators. As a corollary the relative fraction of internal and external mode energy follows, which is shown to govern achievable sensitivity enhancements of solute concentration measurements in droplet sensors. Experimental measurements of nanoparticle concentration based on whispering gallery mode resonance broadening are also presented.
Resumo:
The optical loss of whispering gallery modes of resonantly excited microresonator spheres is determined by optical lifetime measurements. The phase-shift cavity ring-down technique is used to extract ring-down times and optical loss from the difference in amplitude modulation phase between the light entering the microresonator and light scattered from the microresonator. In addition, the phase lag of the light exiting the waveguide, which was used to couple light into the resonator, was measured. The intensity and phase measurements were fully described by a model that assumed interference of the cavity modes with the light propagating in the waveguide.
Resumo:
Performing Pedagogies was a week-long performance and exhibition series I organized that took place in Kingston, Ontario between March 15th - March 20th 2016. The motivation for this project came from a desire to explore performative modes of experiencing critical, embodied knowledge. The series featured five performances, a long distance collaboration between thirty-one Queen’s undergraduate students and a Vancouver artist-run free school (The School for Eventual Vacancy), a subsequent exhibition, a panel discussion, and a radical performance pedagogy workshop led by co-artistic director of the international performance art troupe, La Pocha Nostra. Artists featured included Golboo Amani, Basil AlZeri, Caitlin Chaisson, Justin Langlois, Saul Garcia-Lopez, Francisco-Fernando Granados, and Andrew Rabyniuk. By curating examples of performance art that variously incorporated embodied pedagogical interventions, I examined the processes of performance as pedagogy. Performing Pedagogies explored interventions into contemporary contours of neoliberal education paradigms through embodied encounters—fostering conversations about the meanings and limitations of knowledge dissemination and education today and posing questions about possibilities for radical pedagogies, embodied knowledge, and counter curricula.