952 resultados para Spent Mushroom Substrate
Resumo:
Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).
Resumo:
Objective: Human immunodeficiency virus type 1 (HIV)-associated lipodystrophy syndrome compromises body composition and produces metabolic alterations, such as dyslipidemia and insulin resistance. This study aims to determine whether energy expenditure and substrate oxidation are altered due to human HIV-associated lipodystrophy syndrome. Methods: We compared energy expenditure and substrate oxidation in 10 HIV-infected men with lipodystrophy syndrome (HIV+LIPO+), 22 HIV-infected men without lipodystrophy syndrome (HIV+LIPO-), and 12 healthy controls. Energy expenditure and substrate oxidation were assessed by indirect calorimetry, and body composition was assessed by dual-energy X-ray absorptiometry. The substrate oxidation assessments were performed during fasting and 30 min after eucaloric breakfast consumption (300 kcal). Results: The resting energy expenditure adjusted for lean body mass was significantly higher in the HIV+LIPO+ group than in the healthy controls (P = 0.02). HIV-infected patients had increased carbohydrate oxidation and lower lipid oxidation when compared to the control group (P < 0.05) during fasting conditions. After the consumption of a eucaloric breakfast, there was a significant increase in carbohydrate oxidation only in the HIV+LIPO- and control groups (P < 0.05), but there was no increase in the HIV+LIPO+ group. Conclusion: Hypermetabolism and alteration in substrate oxidation were observed in the HIV+LIPO+ group. (C)2012 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.
Resumo:
The steady state kinetic mechanism of the H(2)O(2)-supported oxidation of different organic substrates by peroxidase from leaves of Chamaerops excelsa palm trees (CEP) has been investigated. An analysis of the initial rates vs. H(2)O(2) and reducing substrate concentrations is consistent with a substrate-inhibited Ping-Pong Bi Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and leads to an interpretation of the effects in terms of the kinetic parameters K(m)(H2O2)center dot K(m)(AH2)center dot k(cat)center dot K(SI)(AH2) and of the microscopic rate constants k(1) and k(3) of the shared three-step catalytic cycle of peroxidases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Pleurotus ostreatus fungus forms an edible mushroom that possesses important nutritional and medicinal properties. Selenium (Se) is essential to human diets and it is in low concentration in the soil, and consequently in food. P. ostreatus was grown in coffee husks enriched with various concentrations of sodium selenite. The biological efficiency of P. ostreatus was affected by the addition of high concentrations of Se. The highest level of Se absorption was obtained by adding 51 mg kg(1) of sodium selenite. The mushrooms from first flush contained more Se than the further flushes. These results demonstrate the great potential of coffee husks in the production of Se-enriched mushrooms and show the ability of this fungus to absorb and biomagnify Se. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Network virtualization is a promising technique for building the Internet of the future since it enables the low cost introduction of new features into network elements. An open issue in such virtualization is how to effect an efficient mapping of virtual network elements onto those of the existing physical network, also called the substrate network. Mapping is an NP-hard problem and existing solutions ignore various real network characteristics in order to solve the problem in a reasonable time frame. This paper introduces new algorithms to solve this problem based on 0–1 integer linear programming, algorithms based on a whole new set of network parameters not taken into account by previous proposals. Approximative algorithms proposed here allow the mapping of virtual networks on large network substrates. Simulation experiments give evidence of the efficiency of the proposed algorithms.
Resumo:
Many studies have drawn attention to the occurrence and concentration of toxic elements found in the fruiting body of mushrooms. Some edible mushroom species are known to accumulate high levels of inorganic contaminants, mainly cadmium, mercury, and lead. There are about 2,000 known edible mushroom species, but only 25 of them are cultivated and used as food. In Brazil, the most marketed and consumed mushroom species are Agaricus bisporus, known as Paris champignon, Lentinus edodes, or Shitake and Pleurotus sp, also called Shimeji or Hiratake. In this study, the concentration of cadmium was determined in Lentinus edodes mushrooms from different cities in São Paulo state and some samples imported from Japan and China. The analyses were performed by graphite furnace atomic absorption spectrometry after HNO3-H2O2 digestion. The results showed a lower concentration of Cd in the mushrooms cultivated in São Paulo (0.0079 to 0.023 mg.kg-1 in natura) than that of the mushrooms cultivated abroad (0.125 to 0.212 mg.kg-1 in natura). Although there is no tolerance limit for Cd in mushrooms in Brazil, the results show that Lentinus edodes mushrooms can be safely consumed.
Resumo:
[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.
Resumo:
Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavementsâ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.
Resumo:
Organotin compounds are worldwide diffused environmental contaminants, mainly as consequence of their extensive past use as biocides in antifouling paints. In spite of law restrictions, due to unwanted effects, organotin still persist in waters, being poorly degraded, easily resuspended from sediments and bioaccumulated in exposed organisms. The widespread toxicity and the possible threat to humans, likely to be organotin-exposed through contaminated seafood, make organotin interactions with biomolecules an intriguing biochemical topic, apart from a matter of ecotoxicological concern. Among organotins, tributyltin (TBT) is long known as the most dangerous and abundant chemical species in the Mediterranean Sea. Due to its amphiphilic nature, provided by three lipophilic arms and an electrophilic tin core, TBT can be easily incorporated in biomembranes and affect their functionality. Accordingly, it is known as a membrane-active toxicant and a mitochondrial poison. Up to now the molecular action modes of TBT are still partially unclear and poorly explored in bivalve mollusks, even if the latter play a not neglectable role in the marine trophic chain and efficiently accumulate organotins. The bivalve mollusk Mytilus galloprovincialis, selected for all experiments, is widely cultivated in the Mediterranean and currently used in ecotoxicological studies. Most work of this thesis was devoted to TBT effects on mussel mitochondria, but other possible targets of TBT were also considered. A great deal of literature points out TBT as endocrine disrupter and the masculinization of female marine gastropods, the so-called imposex, currently signals environmental organotin contamination. The hormonal status of TBT-exposed mussels and the possible interaction between hormones and contaminants in modulating microsomal hydroxilases, involved in steroid hormone and organotin detoxification, were the research topics in the period spent in Barcelona (Marco Polo fellowship). The variegated experimental approach, which consisted of two exposure experiments and in vitro tests, and the choice of selected tissues of M. galloprovincialis, the midgut gland for mitochondrial and microsomal preparations for subsequent laboratory assays and the gonads for the endocrine evaluations, aimed at drawing a clarifying pattern on the molecular mechanisms involved in organotin toxicity. TBT was promptly incorporated in midgut gland mitochondria of adult mussels exposed to 0.5 and 1.0 μg/L TBT, and partially degraded to DBT. TBT incorporation was accompanied by a decrease in the mitochondrial oligomycin-sensitive Mg-ATPase activity, while the coexistent oligomycin-insensitive fraction was unaffected. Mitochondrial fatty acids showed a clear rise in n-3 polyunsaturated fatty acids after 120 hr of TBT exposure, mainly referable to an increase in 22:6 level. TBT was also shown to inhibit the ATP hydrolytic activity of the mitochondrial F1FO complex in vitro and to promote an apparent loss of oligomycin sensitivity at higher than 1.0 μM concentration. The complex dose-dependent profile of the inhibition curve lead to the hypothesis of multiple TBT binding sites. At lower than 1.0 μM TBT concentrations the non competitive enzyme inhibition by TBT was ascribed to the non covalent binding of TBT to FO subunit. On the other hand the observed drop in oligomycin sensitivity at higher than 1.0 μM TBT could be related to the onset of covalent bonds involving thiolic groups on the enzyme structure, apparently reached only at high TBT levels. The mitochondrial respiratory complexes were in vitro affected by TBT, apart from the cytocrome c oxidase which was apparently refractory to the contaminant. The most striking inhibitory effect was shown on complex I, and ascribed to possible covalent bonds of TBT with –SH groups on the enzyme complexes. This mechanism, shouldered by the progressive decrease of free cystein residues in the presence of increasing TBT concentrations, suggests that the onset of covalent tin-sulphur bonds in distinct protein structures may constitute the molecular basis of widespread TBT effects on mitochondrial complexes. Energy production disturbances, in turn affecting energy consuming mechanisms, could be involved in other cellular changes. Mussels exposed to a wide range of TBT concentrations (20 - 200 and 2000 ng/L respectively) did not show any change in testosterone and estrogen levels in mature gonads. Most hormones were in the non-biologically active esterified form both in control and in TBT-treated mussels. Probably the endocrine status of sexually mature mussels could be refractory even to high TBT doses. In mussel digestive gland the high biological variability of microsomal 7-benzyloxy-4-trifluoromethylcoumarin-O-Debenzyloxylase (BFCOD) activity, taken as a measure of CYP3A-like efficiency, probably concealed any enzyme response to TBT exposure. On the other hand the TBT-driven enhancement of BFCOD activity in vitro was once again ascribed to covalent binding to thiol groups which, in this case, would stimulate the enzyme activity. In mussels from Barcelona harbour, a highly contaminated site, the enzyme showed a decreased affinity for the 7-benzyloxy-4-trifluoromethylcoumarin (BCF) substrate with respect to mussel sampled from Ebro Delta, a non-polluted marine site. Contaminant exposure may thus alter the kinetic features of enzymes involved in detoxification mechanisms. Contaminants and steroid hormones were clearly shown to mutually interact in the modulation of detoxification mechanisms. The xenoestrogen 17α-ethylenyl estradiol (EE2) displayed a non-competitive mixed inhibition of CYP3A-like activity by a preferential bond to the free enzyme both in Barcelona harbour and Ebro Delta mussels. The possible interaction with co-present contaminants in Barcelona harbour mussels apparently lessened the formation of the ternary complex enzyme-EE2-BCF. The whole of data confirms TBT as membrane toxicant in mussels as in other species and stresses TBT covalent binding to protein thiols as a widespread mechanism of membrane-bound-enzyme activity modulation by the contaminant.
Resumo:
Physicochemical experimental techniques combined with the specificity of a biological recognition system have resulted in a variety of new analytical devices known as biosensors. Biosensors are under intensive development worldwide because they have many potential applications, e.g. in the fields of clinical diagnostics, food analysis, and environmental monitoring. Much effort is spent on the development of highly sensitive sensor platforms to study interactions on the molecular scale. In the first part, this thesis focuses on exploiting the biosensing application of nanoporous gold (NPG) membranes. NPG with randomly distributed nanopores (pore sizes less than 50 nm) will be discussed here. The NPG membrane shows unique plasmonic features, i.e. it supports both propagating and localized surface plasmon resonance modes (p SPR and l-SPR, respectively), both offering sensitive probing of the local refractive index variation on/in NPG. Surface refractive index sensors have an inherent advantage over fluorescence optical biosensors that require a chromophoric group or other luminescence label to transduce the binding event. In the second part, gold/silica composite inverse opals with macroporous structures were investigated with bio- or chemical sensing applications in mind. These samples combined the advantages of a larger available gold surface area with a regular and highly ordered grating structure. The signal of the plasmon was less noisy in these ordered substrate structures compared to the random pore structures of the NPG samples. In the third part of the thesis, surface plasmon resonance (SPR) spectroscopy was applied to probe the protein-protein interaction of the calcium binding protein centrin with the heterotrimeric G-protein transducin on a newly designed sensor platform. SPR spectroscopy was intended to elucidate how the binding of centrin to transducin is regulated towards understanding centrin functions in photoreceptor cells.
Resumo:
This thesis presents a detailed and successful study of molecular self-assembly on the calcite CaCO3(10-14) surface. One reason for the superior applicability of this particular surface is given by reflecting the well-known growth modes. Layer-by-layer growth, which is a necessity for the formation of templated two-dimensional (2D) molecular structures, is particularly favoured on substrates with a high surface energy. The CaCO3(10-14) surface is among those substrates and, thus, most promising. rnrnAll experiments in this thesis were performed using the non-contact atomic force microscope (NC-AFM) under ultra-high vacuum conditions. The acquisition of drift-free data became in this thesis possible owing to the herein newly developed atom-tracking system. This system features a lateral tip-positioning precision of at least 50pm. Furthermore, a newly developed scan protocol was implemented in this system, which allows for the acquisition of dense three-dimensional (3D) data under room-temperature conditions. An entire 3D data set from a CaCO3(10-14) surface consisting of 85x85x500 pixel is discussed. rnrnThe row-pairing and (2x1) reconstructions of the CaCO3(10-14) surface constitute most interesting research subjects. For both reconstructions, the NC-AFM imaging was classified to a total of 12 contrast modes. Eight of these modes were observed within this thesis, some of them for the first time. Together with literature findings, a total of 10 modes has been observed experimentally to this day. Some contrast modes presented themselves as highly distance-dependent and at least for one contrast mode, a severe tip-termination influence was found. rnrnMost interestingly, the row-pairing reconstruction was found to break a symmetry element of the CaCO3(10-14) surface. With the presence of this reconstruction, the calcite (10-14) surface becomes chiral. From high-resolution NC-AFM data, the identification of the enantiomers is here possible and is presented for one enantiomer in this thesis. rnrnFive studies of self-assembled molecular structures on calcite (10-14) surfaces are presented. Only for one system, namely HBC/CaCO3(10-14), the formation of a molecular bulk structure was observed. This well-known occurence of weak molecule-insulator interaction hinders the investigation of two-dimensional molecular self-assembly. It was, however, possible to force the formation of an island phase for this system upon following a variable-temperature preparation. rnFor the C60/CaCO3(10-14) system it is most notably that no branched island morphologies were found. Instead, the first C60 layer appeared to wet the calcite surface. rnrnIn all studies, the molecules arranged themselves in ordered superstructures. A templating effect due to the underlying calcite substrate was evident for all systems. This templating strikingly led either to the formation of large commensurate superstructures, such as (2x15) with a 14 molecule basis for the C60/CaCO3(10-14) system, or prevented the vast growth of incommensurate molecular motifs, such as the chicken-wire structure in the trimesic acid (TMA)/CaCO3(10-14) system. rnrnThe molecule-molecule and the molecule-substrate interaction was increased upon choosing molecules with carboxylic acid moieties in the third, fourth and fifth study, using terephthalic acid, TMA and helicene molecules. In all these experiments, hydrogen-bonded assemblies were created. rnrnDirected hydrogen bond formation combined with intermolecular pi-pi interaction is employed in the fifth study, where the formation of uni-directional molecular "wires" from single helicene molecules succeeded. Each "wire" is composed of heterochiral helicene pairs, well-aligned along the [01-10] substrate direction and stabilised by pi-pi interaction.
Resumo:
Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.
Resumo:
VT Ablation in Apical Hypertrophic Cardiomyopathy.