899 resultados para Site U1385
Resumo:
PURPOSE: Surgical site infections (SSI) are associated with increased costs and length of hospital stay, readmission rates, and mortality. The aim of this study was to identify risk factors for SSI in patients undergoing laparoscopic cholecystectomy. METHODS: Analysis of 35,432 laparoscopic cholecystectomies of a prospective multicenter database was performed. Risk factors for SSI were identified among demographic data, preoperative patients' history, and operative data using multivariate analysis. RESULTS: SSIs after laparoscopic cholecystectomy were seen in 0.8 % (n = 291) of the patients. Multivariate analysis identified the following parameters as risk factors for SSI: additional surgical procedure (odds ratio [OR] 4.0, 95 % confidence interval [CI] 2.2-7.5), age over 55 years (OR 2.4 [1.8-3.2]), conversion to open procedure (OR 2.6 [1.9-3.6]), postoperative hematoma (OR 1.9 [1.2-3.1]), duration of operation >60 min (OR 2.5 [1.7-3.6], cystic stump insufficiency (OR 12.5 [4.2-37.2]), gallbladder perforation (OR 6.2 [2.4-16.1]), gallbladder empyema (OR 1.7 [1.1-2.7]), and surgical revision (OR 15.7 [10.4-23.7]. SSIs were associated with a significantly prolonged hospital stay (p < 0.001), higher postoperative mortality (p < 0.001), and increased rate of surgical revision (p < 0.001). CONCLUSIONS: Additional surgical procedure was identified as a strong risk factor for SSI after laparoscopic cholecystectomy. Furthermore, operation time >60 min, age >55 years, conversion to open procedure, cystic stump insufficiency, postoperative hematoma, gallbladder perforation, gallbladder empyema, or surgical revision were identified as specific risk factors for SSI after laparoscopic cholecystectomy.
Resumo:
2-Aminopurine (2AP) is a fluorescent isomer of adenine and has a fluorescence lifetime of ~11 ns in water. It is widely used in biochemical settings as a site-specific fluorescent probe of DNA and RNA structure and base-flipping and -folding. These assays assume that 2AP is intrinsically strongly fluorescent. Here, we show this not to be the case, observing that gas-phase, jet-cooled 2-aminopurine and 9-methyl-2-aminopurine have very short fluorescence lifetimes (156 ps and 210 ps, respectively); they are, to all intents and purposes, non-fluorescent. We find that the lifetime of 2-aminopurine increases dramatically when it is part of a hydrate cluster, 2AP·(H2O)n, where n = 1–3. Not only does it depend on the presence of water molecules, it also depends on the specific hydrogen-bonding site to which they attach and on the number of H2O molecules at that site. We selectively microhydrate 2-aminopurine at its sugar-edge, cis-amino or trans-amino sites and see that its fluorescence lifetime increases by 4, 50 and 95 times (to 14.5 ns), respectively.
Resumo:
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.
Resumo:
BACKGROUND: The role of laparoscopy in the setting of perforated appendicitis remains controversial. A retrospective study was conducted to evaluate the early postoperative outcomes of laparoscopic appendectomy (LA) compared to open appendectomy (OA) in patients with perforated appendicitis. METHODS: A total of 1,032 patients required an appendectomy between January 2005 and December 2009. Among these patients, 169 presented with perforated appendicitis. Operation times, length of hospital stay, overall complication rates within 30 days, and surgical site infection (SSI) rates were analyzed. RESULTS: Out of the 169 evaluated patients, 106 required LA and 63 OA. Although operation times were similar in both groups (92 ± 31 min for LA vs. 98 ± 45 for OA, p = 0.338), length of hospital stay was shorter in the LA group (6.9 ± 3.8 days vs. 11.5 ± 9.2, p < 0.001). Overall complication rates were significantly lower in the LA group (32.1 vs. 52.4 %, p < 0.001), as were incisional SSI (1.9 vs. 22.2 %, p < 0.001). Organ/space SSI rates were similar in both groups (23.6 % after LA vs. 20.6 % after OA, p = 0.657). CONCLUSIONS: For perforated appendicitis, LA results in a significantly shorter hospital stay, fewer overall postoperative complications, and fewer wound infections compared to OA. Organ/space SSI rates were similar for both procedures. LA provides a safe option for treating patients with perforated appendicitis.
The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis.
Resumo:
During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Resumo:
We synthesized the phosphinate 7 via photoaddition of methanol to the alpha, beta unsaturated deoxyribono lactone as the key step, followed by an Arbusov reaction for the introduction of phosphorous. Precursor 7 serves for the synthesis and incorporation into DNA of a novel chemically stable abasic site analogue that might act as an inhibitor for DNA glycosylases