999 resultados para Si limitation
Resumo:
A photodilatation effect of undoped a-Si:H films has been discovered by a differential dilatometric method. The film thickness has been found to increase instantaneously when the sample is exposed to light. The dilatation weakens with illumination time, following a stretched exponential law, and finally reaches a saturation value. The dilatation disappears when light is off. The results unambiguously show that the whole structure of the film becomes less compact and less stable under light exposure. The metastable change (Staebler-Wronski effect) could be a redistribution of different configurations after this photodilatation in the a-Si:H films.
Resumo:
The surface structures of the Si(113)-(1 X 1), Si(113)-(3 X 1) and Si(113)-(3 X 2) have been studied theoretically by means of an ab initio quantum chemical CNDO method. We address not only the importance of the surface energy but also the energy minimization and the barrier height in the different structural conversion. We found that (1) the relaxed Si(113)-(1 X 1) structure. (2) the Si(113)-(3 X 1) close to the Si(113) Ranke (3 X 1)-2 model; (3) the atomic positions of Si(113)-(3 X 2) corrugated arrangement. (C) 1997 Elsevier Science B.V.
Resumo:
The crystallographic tilt of the epilayers with respect to their substrates has been observed in many heteroepitaxial systems. Many models have been proposed to explain this phenomenon, but none of them is suitable for the large mismatched system, such as GaAs/Si. Here a new model is proposed for GaAs/Si epilayers, which can also be used in other large mismatched systems. The magnitude of the tilt calculated from this model coincide well with the experimental results. Especially, this model can correctly predict the tilt direction of the GaAs/Si epilayers.
Resumo:
We present photoelectron spectroscopic and low energy electron diffraction measurements of water adsorption on flat Si samples of the orientations (001), (115), (113), (5,5,12) and (112) as well as on curved samples covering continuously the ranges (001)-(117) and (113)-(5,5,12)-(112). On all orientations, water adsorption is dissociative (OH and H) and non-destructive. On Si(001) the sticking coefficient S and the saturation coverage Theta(sat) are largest. On Si(001) and for small miscuts in the [110]-azimuth, S is constant nearly up to saturation which proves that the kinetics involves a weakly bound mobile precursor state. For (001)-vicinals with high miscut angles (9-13 degrees), the step structure breaks down, the precursor mobility is affected and the adsorption kinetics changed. On (115), (113), (5,5,12) and (112), the values of S and Theta(sat) are smaller which indicates that not all sites are able to dissociate and bind water. For (113) the shape of the adsorption curves Theta versus exposure shows the existence of two adsorption processes, one with mobile precursor kinetics and one with Langmuir-like kinetics. On (5,5,12), two processes with mobile precursor kinetics are observed which are ascribed to adsorption on different surface regions within the large surface unit cell. From the corresponding values of S and Theta(sat), data for structure models are deduced. (C) 1997 Elsevier Science B.V.
Resumo:
The structure of silicon surfaces in the orientation range (113)-(5,5,12)-(337)-(112) has been investigated using high resolution LEED and photoemission both on a spherical and on flat samples. We find that Si(5,5,12) [5.3 degrees from (113) and 0.7 degrees from (937)] is the only stable orientation between (113) and (111) and confirm the result of Baski et al. [Science 269, 1556 (1995)] that it has a 2 x 1 superstructure with a very large unit cell of 7.68 x 53.5 Angstrom(2). Adsorption measurements of water on Si(5,5,12) yield a mobile precursor kinetics with two kinds of regions saturating at 0.25 and 0.15 ML which are related to adsorption on different sites. Using these results, a modified structure model is proposed. Surfaces between (113) and (5,5,12) separate into facets of these two orientations; between (5,5,12) and (112), they separate into (5,5,12) and (111) facets. (337) facets in this range may be considered as defective (5,5,12) facets.
Resumo:
Because of Si-Ge interdiffusion in the Si-SiGe interface during the growth process, the square-wave refractive index distribution of a SiGe-Si multiple-quantum-web (MQW) will become smooth. In order to simulate the actual refractive index profile, a staircase approximation is applied. Based on this approach, the dispersion equation of the MQW waveguide is obtained by using a transfer matrix method, The effects of index changes caused by the interdiffusion on the optical field and the characteristics of the photodetector are evaluated by solving the dispersion equation, It is shown that the Si-Ge interdiffusion can result in a reduction of the effective absorption coefficient and the quantum efficiency.
Resumo:
A dissociated screw dislocation parallel to the interface was found in the epitaxial layer of the Ge0.17Si0.83 Si(001) system. It is shown that this dissociated screw dislocation which consists of two 30 degrees partials can relieve misfit strain energy, and the relieved misfit energy is proportional to the width of the stacking fault between the two partials.
Assessment of the structural properties of GaAs/Si epilayers using X-ray (004) and (220) reflections
Resumo:
We improved the method previously used to determine the lattice constants and misorientation of GaAs/Si by recording the patterns of X-ray (004) and (220) reflections. The (220) reflection was measured from the (110) cross section of a GaAs/Si epilayer. The structural properties of the GaAs/Si epilayers grown by metal-organic chemical-vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were investigated. The rotation angle of GaAs/Si epilayers grown by MOCVD using an a-Si buffer layer is very small and the lattice constants of these GaAs/Si epilayers agree quite well with elastic theory.
Resumo:
An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.