947 resultados para Random coefficient logit (RCL) model
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
The implementation of confidential contracts between a container liner carrier and its customers, because of the Ocean Shipping Reform Act (OSRA) 1998, demands a revision in the methodology applied in the carrier's planning of marketing and sales. The marketing and sales planning process should be more scientific and with a better use of operational research tools considering the selection of the customers under contracts, the duration of the contracts, the freight, and the container imbalances of these contracts are basic factors for the carrier's yield. This work aims to develop a decision support system based on a linear programming model to generate the business plan for a container liner carrier, maximizing the contribution margin of its freight.
Resumo:
Compartmental epidemiological models have been developed since the 1920s and successfully applied to study the propagation of infectious diseases. Besides, due to their structure, in the 1960s an interesting version of these models was developed to clarify some aspects of rumor propagation, considering that spreading an infectious disease or disseminating information is analogous phenomena. Here, in an analogy with the SIR (Susceptible-Infected-Removed) epidemiological model, the ISS (Ignorant-Spreader-Stifler) rumor spreading model is studied. By using concepts from the Dynamical Systems Theory, stability of equilibrium points is established, according to propagation parameters and initial conditions. Some numerical experiments are conducted in order to validate the model.
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.
Resumo:
Background: Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal adjuvant. Methodology/Principal Findings: Mice were immunized via the nasal route with lipopolysaccharide isolated from F. tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with the F. tularensis attenuated live vaccine strain (LVS). Mouse survival and analysis of a number of immune parameters were conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of bronchus-associated lymphoid tissue (BALT). BALT areas contained proliferating B and T cells, germinal centers, T cell infiltrates, dendritic cells (DCs). We also observed local production of antibody generating cells and homeostatic chemokines in BALT areas. Conclusions: These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F. tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its formation.
Resumo:
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of four phases, for this system: (i) classical nonpersistence, (ii) classical persistence, (iii) log-periodic nonpersistence, and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however, log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
Resumo:
Baccharis dracunculifolia DC (Asteraceae) is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS). Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO) and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mgkg(-1)) significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract.
Resumo:
We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media. (C) 2010 Optical Society of America
Resumo:
Background: Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a rBCG-S1PT strain that induced a stronger cellular immune response than BCG. This preclinical study was designed to compare the modulatory effects of BCG and rBCG-S1PT on bladder TNF-alpha and IL-10 expression and to evaluate antitumour activity. Methods: For Experiment I, the MB49 bladder cancer cell line was used in C57BL/6 mice. Chemical cauterization of the bladder was performed to promote intravesical tumor implantation. Mice were treated by intravesical instillation with BCG, rBCG-S1PT or PBS once a week for four weeks. After 35 days the bladders were removed and weighed. TNF-
Resumo:
Hardy-Weinberg Equilibrium (HWE) is an important genetic property that populations should have whenever they are not observing adverse situations as complete lack of panmixia, excess of mutations, excess of selection pressure, etc. HWE for decades has been evaluated; both frequentist and Bayesian methods are in use today. While historically the HWE formula was developed to examine the transmission of alleles in a population from one generation to the next, use of HWE concepts has expanded in human diseases studies to detect genotyping error and disease susceptibility (association); Ryckman and Williams (2008). Most analyses focus on trying to answer the question of whether a population is in HWE. They do not try to quantify how far from the equilibrium the population is. In this paper, we propose the use of a simple disequilibrium coefficient to a locus with two alleles. Based on the posterior density of this disequilibrium coefficient, we show how one can conduct a Bayesian analysis to verify how far from HWE a population is. There are other coefficients introduced in the literature and the advantage of the one introduced in this paper is the fact that, just like the standard correlation coefficients, its range is bounded and it is symmetric around zero (equilibrium) when comparing the positive and the negative values. To test the hypothesis of equilibrium, we use a simple Bayesian significance test, the Full Bayesian Significance Test (FBST); see Pereira, Stern andWechsler (2008) for a complete review. The disequilibrium coefficient proposed provides an easy and efficient way to make the analyses, especially if one uses Bayesian statistics. A routine in R programs (R Development Core Team, 2009) that implements the calculations is provided for the readers.
Resumo:
Objective: The aim of this study was to assess the effects of 830 and 670 nm laser on malondialdehyde (MDA) concentration in random skin-flap survival. Background Data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and activating superoxide-dismutase delivery, thus helping the inhibition of free-radical action and consequently reducing necrosis. Materials and Methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each one. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group; group 2 received 830 nm laser radiation; and group 3 was submitted to 670 nm laser radiation. The animals underwent laser therapy with 36 J/cm(2) energy density immediately after surgery and on the 4 days subsequent to surgery. The application site of the laser radiation was 1 point, 2.5 cm from the flap's cranial base. The percentage of the skin-flap necrosis area was calculated 7 days postoperative using the paper-template method, and a skin sample was collected immediately after as a way of determining the MDA concentration. Results: Statistically significant differences were found between the necrosis percentages, with higher values seen in group 1 compared with groups 2 and 3. Groups 2 and 3 did not present statistically significant differences (p > 0.05). Group 3 had a lower concentration of MDA values compared to the control group (p < 0.05). Conclusion: LLLT was effective in increasing the random skin-flap viability in rats, and the 670 nm laser was efficient in reducing the MDA concentration.
Resumo:
Background Tuberculosis clusters in families may be due to increased household exposure, shared genetic factors, or both. Household contact studies are useful to control exposure because socioeconomic and environmental conditions are similar to all subjects, allowing the evaluation of the contribution of relatedness to disease development. Methods In this study, the familial aggregation of tuberculosis using relatedness and a specific inherited marker (HLA-DRB1) was evaluated. Fifty families, which had at least two cases of tuberculosis diagnosed within the past 5 years, were selected from a cohort of tuberculosis carried out in Recife, Brazil. The first case diagnosed was considered to be a primary case. The secondary attack rate of tuberculosis in household contacts was estimated according to the degree of relatedness. The relative risk of having tuberculosis based on the degree of relatedness household and the population attributable fraction to relatedness were also estimated. HLA-DRB1 typing and attributable etiologic/preventive fractions were calculated among sick and healthy household contacts. Results Compared to unrelated contacts, the relative risk for tuberculosis adjusted for age was 1.38 (95% CI 0.86 to 2.21). Relatedness contributed 23% to the development of tuberculosis at the population levels. The HLA-DRB1*04 allele group (OR = 2.44; p =0.0324; etiologic fraction =0.15) was overrepresented and the DRB1*15 allele group (OR=0.48; p=0.0488; protective fraction=0.19) was underrepresented among household contacts exhibiting tuberculosis. The presence of DRB1 shared alleles between primary cases and their contacts was a risk factor for tuberculosis (p=0.0281). Conclusion This household contact model together with the utilisation of two genetic variables permitted the evaluation of genetic factors contributing towards tuberculosis development.
Resumo:
In this paper, we study the behavior of immune memory against antigenic mutation. Using a dynamic model proposed by one of the authors in a previous study (A. de Castro [Phys. J. Appl. Phys. 33, 147 (2006) and Simul. Mod. Pract. Theory. 15, 831 (2007)]), we have performed simulations of several inoculations, where in each virtual sample the viral population undergoes mutations. Our results suggest that the sustainability of the immunizations is dependent on viral variability and that the memory lifetimes are not random, what contradicts what was suggested by Tarlinton et al. [Curr. Opin. Immunol. 20, 162 (2008)]. We show that what may cause an apparent random behavior of the immune memory is the antigenic variability.