949 resultados para Parametric Vibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the use of distributed vibration neutralisers to control the transmission of flexural waves on a beam. Of particular interest is an array of beam-like neutralisers and a continuous plate-like neutraliser. General expressions for wave transmission and reflection metrics either side of the distributed neutralisers are derived. Based on transmission efficiency, the characteristics of multiple neutralisers are investigated in terms of the minimum transmission efficiency, the normalised bandwidth and the shape factor, allowing optimisation of their performance. Analytical results show that the band-stop property of the neutraliser array depends on various factors, including the neutraliser damping, mass, separation distance in the array and the moment arm of each neutraliser. Moreover, it is found that the particular attachment configuration of an uncoupled forcemoment-type neutraliser can be used to improve their overall performance. It is also shown that in the limit of many neutralisers in the array, the performance tends to that of a continuous neutraliser. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three methods are used to determine the natural frequency of undamped free vibration of a mass interacting with a Hertzian contact stiffness. The exact value is determined using the first integral of motion. The harmonic balance method is used on a transformed equation for an approximate solution, and the multiple scales method is used on an approximate equation. The maximum initial displacement avoiding contact loss is also determined, and the corresponding exact natural frequency is also obtained analytically. The methods are evaluated by studying the free vibration of an elastic sphere on a flat rigid surface. © 2011 Elsevier Ltd © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate accurately and comprehensively the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and application of this technique for detecting buried infrastructure is currently being investigated. Here, the potential for making a number of simple point vibration measurements in order to detect shallow-buried objects, in particular plastic pipes, is explored. Point measurements can be made relatively quickly without the need for arrays of surface sensors, which can be expensive, time-consuming to deploy, and sometimes impractical in congested areas. At low frequencies, the ground behaves as a simple single-degree-of-freedom (mass-spring) system with a well-defined resonance, the frequency of which will depend on the density and elastic properties of the soil locally. This resonance will be altered by the presence of a buried object whose properties differ from the surrounding soil. It is this behavior which can be exploited in order to detect the presence of a buried object, provided it is buried at a sufficiently shallow depth. The theoretical background is described and preliminary measurements are made both on a dedicated buried pipe rig and on the ground over a domestic waste pipe. Preliminary findings suggest that, for shallow-buried pipes, a measurement of this kind could be a quick and useful adjunct to more conventional methods of buried pipe detection. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibration transmissibility characteristics of a single-degree-of- freedom (SDOF) passive vibration isolation system with different nonlinear dampers are investigated in this paper. In one configuration, the damper is assumed to be linear and viscous, and is connected to the mass so that it is perpendicular to the spring (horizontal damper). The vibration is in the direction of the spring. The second configuration is one in which the damper is in parallel with the spring but the damping force is proportional to the cube of the relative velocity across the damper (cubic damping). Both configurations are studied for small amplitudes of excitation, when some analysis can be conducted based on analytical expressions, and for large amplitudes of excitation, where the analysis is based on numerical simulations. It is found that the two nonlinear systems can outperform the linear system when force transmissibility is considered. However, for displacement transmissibility, the system with the horizontal damper exhibits some desirable properties, but the system with cubic damping does not. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an exact series solution for the vibration analysis of circular cylindrical shells with arbitrary boundary conditions is obtained, using the elastic equations based on Flügge's theory. Each of the three displacements is represented by a Fourier series and auxiliary functions and sought in a strong form by letting the solution exactly satisfy both the governing differential equations and the boundary conditions on a point-wise basis. Since the series solution has to be truncated for numerical implementation, the term exactly satisfying should be understood as a satisfaction with arbitrary precision. One of the important advantages of this approach is that it can be universally applied to shells with a variety of different boundary conditions, without the need of making any corresponding modifications to the solution algorithms and implementation procedures as typically required in other techniques. Furthermore, the current method can be easily used to deal with more complicated boundary conditions such as point supports, partial supports, and non-uniform elastic restraints. Numerical examples are presented regarding the modal parameters of shells with various boundary conditions. The capacity and reliability of this solution method are demonstrated through these examples. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to develop a dynamic vibration absorber using viscoelastic material with nonlinear essential stiffness and time-dependent damping properties for a non-ideal vibrating system with Sommerfeld effect, resonance capture, and jump phenomenon. The absorber is a mass-bar subsystem that consists of a viscoelastic bar with memory attached to mass, in which the internal dissipative forces depend on current, deformations, and its operational frequency varies with limited temperature. The non-ideal vibrating system consists of a linear (nonlinear) oscillator (plane frame structure) under excitation, via spring connector, of a DC-motor with limited power supply. A viscoelastic dynamic absorber modeled with elastic stiffness essentially nonlinearities was developed to further reduce the Sommerfeld effect and the response of the structure. The numerical results show the performance of the absorber on the non-ideal system response through the resonance curves, time histories, and Poincarésections. Furthermore, the structure responses using the viscoelastic damper with and without memory were studied. © IMechE 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers the vibrating system that consists of a snap-through truss absorber coupled to an oscillator under excitation of an electric motor with an eccentricity and limited power, characterizing a non-ideal oscillator. It is aimed to use the non-linearity and quasi-zero stiffness of absorber (snap-through truss absorber) to obtain a significantly attenuation the jump phenomenon. There is also an interest to exhibit the reduction of Sommerfeld effect, to confirm the saturation phenomenon occurrence and show the power transfer in a non-linear structure, evidencing the pumping energy. As shown by simulations in this work, this absorber allows the energy pumping before and during the jump phenomenon, decreasing the higher amplitudes of considered system. Additionally, the occurrence of saturation phenomenon due use of snap-through truss absorber is verified. The analysis of parameter uncertainties was introduced. Sensitivity of system with parametric errors demonstrated a trustable system. © IMechE 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the most desirable configuration of a two-stage nonlinear vibration isolation system, in which the isolators contain hardening geometric stiffness nonlinearity and linear viscous damping. The force transmissibility of the system is used as the measure of the effectiveness of the isolation system. The hardening nonlinearity is achieved by placing horizontal springs onto the suspended and intermediate masses, which are supported by vertical springs. It is found that nonlinearity in the upper stage has very little effect and thus serves little purpose. The nonlinearity in the lower stage, however, has a profound effect, and can significantly improve the effectiveness of the isolation system. Further, it is found that it is desirable to have high damping in the upper stage and very low damping in the lower stage. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on applying fuzzy control embedded in microcontrollers in an experimental apparatus using magnetorheological fluid damper. The non-linear behavior of the magnetorheological dampers associated with the parametric variations on vehicle suspension models corroborate the use of the fuzzy controllers. The fundamental formulation of this controller is discussed and its performance is shown through numeric simulations. An experimental apparatus representing a two degree of freedom system containing a magnetorheological damper is used to identify the main parameters and to evaluate the performance of the closed-loop system with the embedded low-cost microcontroller-based fuzzy controller. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system. © 2013 IOP Publishing Ltd.