995 resultados para OXIDE CHAINS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-voltage behaviour of oxide TFTs is modeled based on trap-limited conduction and percolation theories. The mobility has a power-law dependence, in which percolation controls the exponent while trap states determine constant term in the power law. The proposed model, which is fully physically-based, provides a good agreement with measured transistor characteristics as well as transient operations of fabricated pixel test circuits for oxide-based OLED displays. © 2013 Society for Information Display.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of ΔEt 0.3 eV and with a density of state distribution as Dt(Et-j)=Dt0exp(-ΔEt/ kT)with Dt0 = 5.02 × 1011 cm-2 eV-1. Such a model is useful for developing simulation tools for circuit design. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces the problem of passive control of a chain of N identical masses in which there is an identical passive connection between neighbouring masses and a similar connection to a movable point. The problem arises in the design of multi-storey buildings which are subjected to earthquake disturbances, but applies in other situations, for example vehicle platoons. The paper will study the scalar transfer functions from the disturbance to a given intermass displacement. It will be shown that these transfer functions can be conveniently represented in the form of complex iterative maps and that these maps provide a method to establish boundedness in N of the H ∞-norm of these transfer functions for certain choices of interconnection impedance. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistivity of hydrothermally grown ZnO single crystals increased from similar to 10(3) Omega cm to similar to 10(6) Omega cm after 1.8 MeV electron irradiation with a fluence of similar to 10(16) cm(-2), and to similar to 10(9) Omega cm as the fluence increased to similar to 10(18) cm(-2). Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 10(18) cm(-2), the normalized TSC signal increased by a factor of similar to 100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 degrees C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the lateral carrier transfer in a specially designed quantum dot chain structure by means of time-resolved photoluminescence (PL) and polarization PL. The PL decay time increases with temperature, following the T-1/2 law for the typical one-dimensional quantum system. The decay time depends strongly on the emission energy: it decreases as the photon energy increases. Moreover, a strong polarization anisotropy is observed. These results are attributed to the efficient lateral transfer of carriers along the chain direction. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics.