981 resultados para Mantle fluids
Resumo:
We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).
Resumo:
We use a simple model of associating fluids which consists of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the bonding interactions between each pair of spots have strengths epsilon(AA), epsilon(BB), and epsilon(AB). The theory is applied over the whole range of bonding strengths and the results are interpreted in terms of the equilibrium cluster structures of the phases. In addition to our numerical results, we derive asymptotic expansions for the free energy in the limits for which there is no liquid-vapor critical point: linear chains (epsilon(AA)not equal 0, epsilon(AB)=epsilon(BB)=0), hyperbranched polymers (epsilon(AB)not equal 0, epsilon(AA)=epsilon(BB)=0), and dimers (epsilon(BB)not equal 0, epsilon(AA)=epsilon(AB)=0). These expansions also allow us to calculate the structure of the critical fluid by perturbing around the above limits, yielding three different types of condensation: of linear chains (AA clusters connected by a few AB or BB bonds); of hyperbranched polymers (AB clusters connected by AA bonds); or of dimers (BB clusters connected by AA bonds). Interestingly, there is no critical point when epsilon(AA) vanishes despite the fact that AA bonds alone cannot drive condensation.
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com Especialização em Energia, Climatização e Refrigeração
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de mestre em Engenharia Química e Biológica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
We present an analysis and characterization of the regional seismicity recorded by a temporary broadband seismic network deployed in the Cape Verde archipelago between November 2007 and September 2008. The detection of earthquakes was based on spectrograms, allowing the discrimination from low-frequency volcanic signals, resulting in 358 events of which 265 were located, the magnitudes usually being smaller than 3. For the location, a new 1-D P-velocity model was derived for the region showing a crust consistent with an oceanic crustal structure. The seismicity is located mostly offshore the westernmost and geologically youngest areas of the archipelago, near the islands of Santo Antao and Sao Vicente in the NW and Brava and Fogo in the SW. The SW cluster has a lower occurrence rate and corresponds to seismicity concentrated mainly along an alignment between Brava and the Cadamosto seamount presenting normal faulting mechanisms. The existence of the NW cluster, located offshore SW of Santo Antao, was so far unknown and concentrates around a recently recognized submarine cone field; this cluster presents focal depths extending from the crust to the upper mantle and suggests volcanic unrest No evident temporal behaviour could be perceived, although the events tend to occur in bursts of activity lasting a few days. In this recording period, no significant activity was detected at Fogo volcano, the most active volcanic edifice in Cape Verde. The seismicity characteristics point mainly to a volcanic origin. The correlation of the recorded seismicity with active volcanic structures agrees with the tendency for a westward migration of volcanic activity in the archipelago as indicated by the geologic record. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.
Resumo:
The morpho-structural evolution of oceanic islands results from competition between volcano growth and partial destruction by mass-wasting processes. We present here a multi-disciplinary study of the successive stages of development of Faial (Azores) during the last 1 Myr. Using high-resolution digital elevation model (DEM), and new K/Ar, tectonic, and magnetic data, we reconstruct the rapidly evolving topography at successive stages, in response to complex interactions between volcanic construction and mass wasting, including the development of a graben. We show that: (1) sub-aerial evolution of the island first involved the rapid growth of a large elongated volcano at ca. 0.85 Ma, followed by its partial destruction over half a million years; (2) beginning about 360 ka a new small edifice grew on the NE of the island, and was subsequently cut by normal faults responsible for initiation of the graben; (3) after an apparent pause of ca. 250 kyr, the large Central Volcano (CV) developed on the western side of the island at ca 120 ka, accumulating a thick pile of lava flows in less than 20 kyr, which were partly channelized within the graben; (4) the period between 120 ka and 40 ka is marked by widespread deformation at the island scale, including westward propagation of faulting and associated erosion of the graben walls, which produced sedimentary deposits; subsequent growth of the CV at 40 ka was then constrained within the graben, with lava flowing onto the sediments up to the eastern shore; (5) the island evolution during the Holocene involves basaltic volcanic activity along the main southern faults and pyroclastic eruptions associated with the formation of a caldera volcano-tectonic depression. We conclude that the whole evolution of Faial Island has been characterized by successive short volcanic pulses probably controlled by brief episodes of regional deformation. Each pulse has been separated by considerable periods of volcanic inactivity during which the Faial graben gradually developed. We propose that the volume loss associated with sudden magma extraction from a shallow reservoir in different episodes triggered incremental downward graben movement, as observed historically, when immediate vertical collapse of up to 2 m was observed along the western segments of the graben at the end of the Capelinhos eruptive crises (1957-58).
Resumo:
An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.