914 resultados para Internet-centric Systems in Hydroinformatics
Resumo:
This paper reports the results of the assessment of a range of measures implemented in bus systems in five European cities to improve the use of public transport by increasing its attractiveness and enhancing its image in urban areas. This research was conducted as part of the EBSF project (European Bus System of the Future) from 2008 to 2012. New buses (prototypes), new vehicle and infrastructure technologies, and operational best practices were introduced, all of which were combined in a system approach. The measures were assessed using multicriteria analysis to simultaneously evaluate a certain number of criteria that need to be aggregated. Each criterion is measured by one or more key performance indicators (KPI) calculated in two scenarios (reference scenario, with no measure implemented; and project scenario, with the implementation of some measures), in order to evaluate the difference in the KPI performance between the reference and project scenario. The results indicate that the measures produce a greater benefit in issues related to bus system productivity and customer satisfaction, with the greatest impact on aspects of perceptions of comfort, cleanliness and quality of service, information to passengers and environmental issues. The study also reveals that the implementation of several measures has greater social utility than very specific and isolated measures.
Resumo:
In the last decade, the research community has focused on new classification methods that rely on statistical characteristics of Internet traffic, instead of pre-viously popular port-number-based or payload-based methods, which are under even bigger constrictions. Some research works based on statistical characteristics generated large fea-ture sets of Internet traffic; however, nowadays it?s impossible to handle hun-dreds of features in big data scenarios, only leading to unacceptable processing time and misleading classification results due to redundant and correlative data. As a consequence, a feature selection procedure is essential in the process of Internet traffic characterization. In this paper a survey of feature selection methods is presented: feature selection frameworks are introduced, and differ-ent categories of methods are briefly explained and compared; several proposals on feature selection in Internet traffic characterization are shown; finally, future application of feature selection to a concrete project is proposed.
Resumo:
En esta tesis presentamos una teoría adaptada a la simulación de fenómenos lentos de transporte en sistemas atomísticos. En primer lugar, desarrollamos el marco teórico para modelizar colectividades estadísticas de equilibrio. A continuación, lo adaptamos para construir modelos de colectividades estadísticas fuera de equilibrio. Esta teoría reposa sobre los principios de la mecánica estadística, en particular el principio de máxima entropía de Jaynes, utilizado tanto para sistemas en equilibrio como fuera de equilibrio, y la teoría de las aproximaciones del campo medio. Expresamos matemáticamente el problema como un principio variacional en el que maximizamos una entropía libre, en lugar de una energía libre. La formulación propuesta permite definir equivalentes atomísticos de variables macroscópicas como la temperatura y la fracción molar. De esta forma podemos considerar campos macroscópicos no uniformes. Completamos el marco teórico con reglas de cuadratura de Monte Carlo, gracias a las cuales obtenemos modelos computables. A continuación, desarrollamos el conjunto completo de ecuaciones que gobiernan procesos de transporte. Deducimos la desigualdad de disipación entrópica a partir de fuerzas y flujos termodinámicos discretos. Esta desigualdad nos permite identificar la estructura que deben cumplir los potenciales cinéticos discretos. Dichos potenciales acoplan las tasas de variación en el tiempo de las variables microscópicas con las fuerzas correspondientes. Estos potenciales cinéticos deben ser completados con una relación fenomenológica, del tipo definido por la teoría de Onsanger. Por último, aportamos validaciones numéricas. Con ellas ilustramos la capacidad de la teoría presentada para simular propiedades de equilibrio y segregación superficial en aleaciones metálicas. Primero, simulamos propiedades termodinámicas de equilibrio en el sistema atomístico. A continuación evaluamos la habilidad del modelo para reproducir procesos de transporte en sistemas complejos que duran tiempos largos con respecto a los tiempos característicos a escala atómica. ABSTRACT In this work, we formulate a theory to address simulations of slow time transport effects in atomic systems. We first develop this theoretical framework in the context of equilibrium of atomic ensembles, based on statistical mechanics. We then adapt it to model ensembles away from equilibrium. The theory stands on Jaynes' maximum entropy principle, valid for the treatment of both, systems in equilibrium and away from equilibrium and on meanfield approximation theory. It is expressed in the entropy formulation as a variational principle. We interpret atomistic equivalents of macroscopic variables such as the temperature and the molar fractions, wich are not required to be uniform, but can vary from particle to particle. We complement this theory with Monte Carlo summation rules for further approximation. In addition, we provide a framework for studying transport processes with the full set of equations driving the evolution of the system. We first derive a dissipation inequality for the entropic production involving discrete thermodynamic forces and fluxes. This discrete dissipation inequality identifies the adequate structure for discrete kinetic potentials which couple the microscopic field rates to the corresponding driving forces. Those kinetic potentials must finally be expressed as a phenomenological rule of the Onsanger Type. We present several validation cases, illustrating equilibrium properties and surface segregation of metallic alloys. We first assess the ability of a simple meanfield model to reproduce thermodynamic equilibrium properties in systems with atomic resolution. Then, we evaluate the ability of the model to reproduce a long-term transport process in complex systems.
Resumo:
The current approach to developing mixed-criticality sys- tems is by partitioning the hardware resources (processors, memory and I/O devices) among the different applications. Partitions are isolated from each other both in the temporal and the spatial domain, so that low-criticality applications cannot compromise other applications with a higher level of criticality in case of misbehaviour. New architectures based on many-core processors open the way to highly parallel systems in which each partition can be allocated to a set of dedicated proces- sor cores, thus simplifying partition scheduling and temporal separation. Moreover, spatial isolation can also benefit from many-core architectures, by using simpler hardware mechanisms to protect the address spaces of different applications. This paper describes an architecture for many- core embedded partitioned systems, together with some implementation advice for spatial isolation.
Resumo:
Abstract We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10-42 are accurately estimated with little computational effort.
Resumo:
In classical distributed systems, each process has a unique identity. Today, new distributed systems have emerged where a unique identity is not always possible to be assigned to each process. For example, in many sensor networks a unique identity is not possible to be included in each device due to its small storage capacity, reduced computational power, or the huge number of devices to be identified. In these cases, we have to work with anonymous distributed systems where processes cannot be identified. Consensus cannot be solved in classical and anonymous asynchronous distributed systems where processes can crash. To bypass this impossibility result, failure detectors are added to these systems. It is known that ? is the weakest failure detector class for solving consensus in classical asynchronous systems when amajority of processes never crashes. Although A? was introduced as an anonymous version of ?, to find the weakest failure detector in anonymous systems to solve consensus when amajority of processes never crashes is nowadays an open question. Furthermore, A? has the important drawback that it is not implementable. Very recently, A? has been introduced as a counterpart of ? for anonymous systems. In this paper, we show that the A? failure detector class is strictly weaker than A? (i.e., A? provides less information about process crashes than A?). We also present in this paper the first implementation of A? (hence, we also show that A? is implementable), and, finally, we include the first implementation of consensus in anonymous asynchronous systems augmented with A? and where a majority of processes does not crash.
Resumo:
Las herramientas de configuración basadas en lenguajes de alto nivel como LabVIEW permiten el desarrollo de sistemas de adquisición de datos basados en hardware reconfigurable FPGA muy complejos en un breve periodo de tiempo. La estandarización del ciclo de diseño hardware/software y la utilización de herramientas como EPICS facilita su integración con la plataforma de adquisición y control ITER CODAC CORE SYSTEM (CCS) basada en Linux. En este proyecto se propondrá una metodología que simplificará el ciclo completo de integración de plataformas novedosas, como cRIO, en las que el funcionamiento del hardware de adquisición puede ser modificado por el usuario para que éste se amolde a sus requisitos específicos. El objetivo principal de este proyecto fin de master es realizar la integración de un sistema cRIO NI9159 y diferentes módulos de E/S analógica y digital en EPICS y en CODAC CORE SYSTEM (CCS). Este último consiste en un conjunto de herramientas software que simplifican la integración de los sistemas de instrumentación y control del experimento ITER. Para cumplir el objetivo se realizarán las siguientes tareas: • Desarrollo de un sistema de adquisición de datos basado en FPGA con la plataforma hardware CompactRIO. En esta tarea se realizará la configuración del sistema y la implementación en LabVIEW para FPGA del hardware necesario para comunicarse con los módulos: NI9205, NI9264, NI9401.NI9477, NI9426, NI9425 y NI9476 • Implementación de un driver software utilizando la metodología de AsynDriver para integración del cRIO con EPICS. Esta tarea requiere definir todos los records necesarios que exige EPICS y crear las interfaces adecuadas que permitirán comunicarse con el hardware. • Implementar la descripción del sistema cRIO y del driver EPICS en el sistema de descripción de plantas de ITER llamado SDD. Esto automatiza la creación de las aplicaciones de EPICS que se denominan IOCs. SUMMARY The configuration tools based in high-level programing languages like LabVIEW allows the development of high complex data acquisition systems based on reconfigurable hardware FPGA in a short time period. The standardization of the hardware/software design cycle and the use of tools like EPICS ease the integration with the data acquisition and control platform of ITER, the CODAC Core System based on Linux. In this project a methodology is proposed in order to simplify the full integration cycle of new platforms like CompactRIO (cRIO), in which the data acquisition functionality can be reconfigured by the user to fits its concrete requirements. The main objective of this MSc final project is to develop the integration of a cRIO NI-9159 and its different analog and digital Input/Output modules with EPICS in a CCS. The CCS consists of a set of software tools that simplifies the integration of instrumentation and control systems in the International Thermonuclear Reactor (ITER) experiment. To achieve such goal the following tasks are carried out: • Development of a DAQ system based on FPGA using the cRIO hardware platform. This task comprehends the configuration of the system and the implementation of the mandatory hardware to communicate to the I/O adapter modules NI9205, NI9264, NI9401, NI9477, NI9426, NI9425 y NI9476 using LabVIEW for FPGA. • Implementation of a software driver using the asynDriver methodology to integrate such cRIO system with EPICS. This task requires the definition of the necessary EPICS records and the creation of the appropriate interfaces that allow the communication with the hardware. • Develop the cRIO system’s description and the EPICS driver in the ITER plant description tool named SDD. This development will automate the creation of EPICS applications, called IOCs.
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
Background: For a comprehensive health sector response to intimate partner violence (IPV), interventions should target individual and health facility levels, along with the broader health systems level which includes issues of governance, financing, planning, service delivery, monitoring and evaluation, and demand generation. This study aims to map and explore the integration of IPV response in the Spanish national health system. Methods: Information was collected on five key areas based on WHO recommendations: policy environment, protocols, training, monitoring and prevention. A systematic review of public documents was conducted to assess 39 indicators in each of Spain’s 17 regional health systems. In addition, we performed qualitative content analysis of 26 individual interviews with key informants responsible for coordinating the health sector response to IPV in Spain. Results: In 88% of the 17 autonomous regions, the laws concerning IPV included the health sector response, but the integration of IPV in regional health plans was just 41%. Despite the existence of a supportive national structure, responding to IPV still relies strongly on the will of health professionals. All seventeen regions had published comprehensive protocols to guide the health sector response to IPV, but participants recognized that responding to IPV was more complex than merely following the steps of a protocol. Published training plans existed in 43% of the regional health systems, but none had institutionalized IPV training in medical and nursing schools. Only 12% of regional health systems collected information on the quality of the IPV response, and there are many limitations to collecting information on IPV within health services, for example underreporting, fears about confidentiality, and underuse of data for monitoring purposes. Finally, preventive activities that were considered essential were not institutionalized anywhere. Conclusions: Within the Spanish health system, differences exist in terms of achievements both between regions and between the areas assessed. Progress towards integration of IPV has been notable at the level of policy, less outstanding regarding health service delivery, and very limited in terms of preventive actions.
Resumo:
Society, as we know it today, is completely dependent on computer networks, Internet and distributed systems, which place at our disposal the necessary services to perform our daily tasks. Moreover, and unconsciously, all services and distributed systems require network management systems. These systems allow us to, in general, maintain, manage, configure, scale, adapt, modify, edit, protect or improve the main distributed systems. Their role is secondary and is unknown and transparent to the users. They provide the necessary support to maintain the distributed systems whose services we use every day. If we don’t consider network management systems during the development stage of main distributed systems, then there could be serious consequences or even total failures in the development of the distributed systems. It is necessary, therefore, to consider the management of the systems within the design of distributed systems and systematize their conception to minimize the impact of the management of networks within the project of distributed systems. In this paper, we present a formalization method of the conceptual modelling for design of a network management system through the use of formal modelling tools, thus allowing from the definition of processes to identify those responsible for these. Finally we will propose a use case to design a conceptual model intrusion detection system in network.
Resumo:
Comunicación presentada en las V Jornadas de Computación Empotrada, Valladolid, 17-19 Septiembre 2014
Resumo:
Voters try to avoid wasting their votes even in PR systems. In this paper we make a case that this type of strategic voting can be observed and predicted even in PR systems. Contrary to the literature we do not see weak institutional incentive structures as indicative of a hopeless endeavor for studying strategic voting. The crucial question for strategic voting is how institutional incentives constrain an individual’s decision-making process. Based on expected utility maximization we put forward a micro-logic of an individual’s expectation formation process driven by institutional and dispositional incentives. All well-known institutional incentives to vote strategically that get channelled through the district magnitude are moderated by dispositional factors in order to become relevant for voting decisions. Employing data from Finland – because of its electoral system a particularly hard testing ground - we find considerable evidence for observable implications of our theory.
Resumo:
Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production.
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.
Resumo:
We examined sediments from Neogene and Quaternary sections of the Benguela and Oman upwelling systems (DSDP Site 532, ODP Sites 723 and 722) to determine environmental and geochemical factors which control and limit pyrite formation in organic-carbon-rich marine sediments. Those samples from the upwelling sites, which contained low to moderate concentrations of total organic carbon (0.7%-3%), had C/S ratios typical of normal marine sediments, i.e., around 2.8. In these sediments, TOC availability probably limited pyrite formation. Results that do not conform with accepted models were found for the sediments high in TOC (3^0-12.4%). The organic matter was of marine origin and contained considerable pyrolytic hydrocarbons, a fact that we take as a sign of low degradation, yet significant concentrations of dissolved sulfate coexisted with it (> 5 mmol/L in the case of Sites 532 and 723). Detrital iron was probably not limiting in either case, because the degree of pyritization was always less than 0.65. Therefore, controls on sulfate reduction and pyrite formation in the organic matter-rich sediments do not appear to conform simply to generally accepted diagenetic models. The data from these thermally immature, old, and organic-rich marine sediments imply that (1) the total reduced sulfur content of organic-rich marine upwelling sediments rarely exceeds an approximate boundary of 1.5% by weight, (2) the C/S ratio of these sediments is not constant and usually much higher than the empirical values proposed for marine sediments. We conclude that sedimentary pyrite formation in upwelling sediments is limited by an as yet unknown factor, and that caution is advised in using C/S ratios and C vs. S diagrams in paleoenvironmental reconstructions for organic-rich sediments.