907 resultados para Hyperbolic Dynamic System
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
Even though the use of recommender systems is already widely spread in several application areas, there is still a lack of studies for accessibility research field. One of these attempts to use recommender system benefits for accessibility needs is Vulcanus. The Vulcanus recommender system uses similarity analysis to compare user’s trails. In this way, it is possible to take advantage of the user’s past behavior and distribute personalized content and services. The Vulcanus combined concepts from ubiquitous computing, such as user profiles, context awareness, trails management, and similarity analysis. It uses two different approaches for trails similarity analysis: resources patterns and categories patterns. In this work we performed an asymptotic analysis, identifying Vulcanus’ algorithm complexity. Furthermore we also propose improvements achieved by dynamic programming technique, so the ordinary case is improved by using a bottom-up approach. With that approach, many unnecessary comparisons can be skipped and now Vulcanus 2.0 is presented with improvements in its average case scenario.
Resumo:
Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.
Resumo:
Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Resumo:
The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of tissue engineered bone constructs can succeed, in vitro fabrication needs to address limitations in large-scale tissue development, including controlled osteogenesis and an inadequate vasculature network to prevent necrosis of large constructs. The tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cell (hMSC)-seeded scaffolds while they are developed in vitro. To further enhance this process, we developed a novel osteogenic growth factors delivery system for dynamically cultured hMSCs using microparticles encapsulated in three-dimensional alginate scaffolds. In light of this increased differentiation, we characterized the endogenous cytokine distribution throughout the TPS bioreactor. An advantageous effect in the ‘outlet’ portion of the uniaxial growth chamber was discovered due to the system’s downstream circulation and the unique modular aspect of the scaffolds. This unique trait allowed us to carefully tune the differentiation behavior of specific cell populations. We applied the knowledge gained from the growth profile of the TPS bioreactor to culture a high-volume bone composite in a 3D-printed femur mold. This resulted in a tissue engineered bone construct with a volume of 200cm3, a 20-fold increase over previously reported sizes. We demonstrated high viability of the cultured cells throughout the culture period as well as early signs of osteogenic differentiation. Taking one step closer toward a viable implant and minimize tissue necrosis after implantation, we designed a composite construct by coculturing endothelial cells (ECs) and differentiating hMSCs, encouraging prevascularization and anastomosis of the graft with the host vasculature. We discovered the necessity of cell to cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. Notably, the results suggested increased osteogenic and angiogenic potential of the encapsulated cells when dynamically cultured in the TPS bioreactor, suggesting a synergistic effect between coculture and applied shear stress. This work highlights the feasibility of fabricating a high-volume, prevascularized tissue engineered bone construct for the regeneration of a critical size defect.
Resumo:
The share of variable renewable energy in electricity generation has seen exponential growth during the recent decades, and due to the heightened pursuit of environmental targets, the trend is to continue with increased pace. The two most important resources, wind and insolation both bear the burden of intermittency, creating a need for regulation and posing a threat to grid stability. One possibility to deal with the imbalance between demand and generation is to store electricity temporarily, which was addressed in this thesis by implementing a dynamic model of adiabatic compressed air energy storage (CAES) with Apros dynamic simulation software. Based on literature review, the existing models due to their simplifications were found insufficient for studying transient situations, and despite of its importance, the investigation of part load operation has not yet been possible with satisfactory precision. As a key result of the thesis, the cycle efficiency at design point was simulated to be 58.7%, which correlated well with literature information, and was validated through analytical calculations. The performance at part load was validated against models shown in literature, showing good correlation. By introducing wind resource and electricity demand data to the model, grid operation of CAES was studied. In order to enable the dynamic operation, start-up and shutdown sequences were approximated in dynamic environment, as far as is known, the first time, and a user component for compressor variable guide vanes (VGV) was implemented. Even in the current state, the modularly designed model offers a framework for numerous studies. The validity of the model is limited by the accuracy of VGV correlations at part load, and in addition the implementation of heat losses to the thermal energy storage is necessary to enable longer simulations. More extended use of forecasts is one of the important targets of development, if the system operation is to be optimised in future.
Resumo:
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Over the past decade Surface Plasmon Resonance (SPR) techniques have been applied to the measurement of numerous analytes. In this article, an SPR biosensor system deployed from an oceanographic vessel was used to measure dissolved domoic acid (DA), a common and harmful phycotoxin produced by certain microalgae species belonging to the genus Pseudo-nitzschia. During the biosensor deployment, concentrations of Pseudo-nitzschia cells were very low over the study area and measured DA concentrations were below detection. However, the in situ operational detection limit of the system was established using calibrated seawater solutions spiked with DA. The system could detect the toxin at concentrations as low as 0.1 ng mL−1 and presented a linear dynamic range from 0.1 ng mL−1 to 2.0 ng mL−1. This sensor showed promise for in situ detection of DA.
Resumo:
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
Resumo:
In this work, we introduce a new class of numerical schemes for rarefied gas dynamic problems described by collisional kinetic equations. The idea consists in reformulating the problem using a micro-macro decomposition and successively in solving the microscopic part by using asymptotic preserving Monte Carlo methods. We consider two types of decompositions, the first leading to the Euler system of gas dynamics while the second to the Navier-Stokes equations for the macroscopic part. In addition, the particle method which solves the microscopic part is designed in such a way that the global scheme becomes computationally less expensive as the solution approaches the equilibrium state as opposite to standard methods for kinetic equations which computational cost increases with the number of interactions. At the same time, the statistical error due to the particle part of the solution decreases as the system approach the equilibrium state. This causes the method to degenerate to the sole solution of the macroscopic hydrodynamic equations (Euler or Navier-Stokes) in the limit of infinite number of collisions. In a last part, we will show the behaviors of this new approach in comparisons to standard Monte Carlo techniques for solving the kinetic equation by testing it on different problems which typically arise in rarefied gas dynamic simulations.
Resumo:
This paper deals with the development and the analysis of asymptotically stable and consistent schemes in the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To solve this problem, we propose a new scheme stable for choices of time steps independent from the small scales dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this first work on this subject, we propose a first order in time scheme and we perform a relative linear stability analysis to deal with such problems. The framework we propose permits to extend this approach to high order schemes in the next future. We finally show the capability of the method in dealing with small scales through numerical experiments.
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89). The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a chanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct. The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population.