Asymptotic preserving and time diminishing schemes for rarefied gas dynamic
Contribuinte(s) |
Institut de Recherche Mathématique de Rennes (IRMAR) ; Centre National de la Recherche Scientifique (CNRS) - AGROCAMPUS OUEST - École normale supérieure - Cachan (ENS Cachan) - Institut National des Sciences Appliquées (INSA) - Université de Rennes 1 (UR1) - Université Rennes 2 - Institut National de Recherche en Informatique et en Automatique (Inria) Invariant Preserving SOlvers (IPSO) ; Institut de Recherche Mathématique de Rennes (IRMAR) ; Centre National de la Recherche Scientifique (CNRS) - AGROCAMPUS OUEST - École normale supérieure - Cachan (ENS Cachan) - Institut National des Sciences Appliquées (INSA) - Université de Rennes 1 (UR1) - Université Rennes 2 - Institut National de Recherche en Informatique et en Automatique (Inria) - Centre National de la Recherche Scientifique (CNRS) - AGROCAMPUS OUEST - École normale supérieure - Cachan (ENS Cachan) - Institut National des Sciences Appliquées (INSA) - Université de Rennes 1 (UR1) - Université Rennes 2 - Institut National de Recherche en Informatique et en Automatique (Inria) - Inria Rennes – Bretagne Atlantique ; Institut National de Recherche en Informatique et en Automatique (Inria) Institut National de Recherche en Informatique et en Automatique (Inria) Department of Mathematics and Informatics ; University of Ferrara [Ferrara] Centre National de la Recherche Scientifique (CNRS) ANR-14-CE23-0007, MOONRISE, MOdèles, Oscillations et SchEmas NUmeriques(2014) |
---|---|
Data(s) |
01/09/2016
|
Resumo |
In this work, we introduce a new class of numerical schemes for rarefied gas dynamic problems described by collisional kinetic equations. The idea consists in reformulating the problem using a micro-macro decomposition and successively in solving the microscopic part by using asymptotic preserving Monte Carlo methods. We consider two types of decompositions, the first leading to the Euler system of gas dynamics while the second to the Navier-Stokes equations for the macroscopic part. In addition, the particle method which solves the microscopic part is designed in such a way that the global scheme becomes computationally less expensive as the solution approaches the equilibrium state as opposite to standard methods for kinetic equations which computational cost increases with the number of interactions. At the same time, the statistical error due to the particle part of the solution decreases as the system approach the equilibrium state. This causes the method to degenerate to the sole solution of the macroscopic hydrodynamic equations (Euler or Navier-Stokes) in the limit of infinite number of collisions. In a last part, we will show the behaviors of this new approach in comparisons to standard Monte Carlo techniques for solving the kinetic equation by testing it on different problems which typically arise in rarefied gas dynamic simulations. |
Identificador |
hal-01392412 https://hal.inria.fr/hal-01392412 https://hal.inria.fr/hal-01392412/document https://hal.inria.fr/hal-01392412/file/Time_Diminishing_AP_revised.pdf |
Idioma(s) |
en |
Publicador |
HAL CCSD |
Fonte |
https://hal.inria.fr/hal-01392412 2016 |
Palavras-Chave | #[PHYS.PHYS.PHYS-COMP-PH] Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] #[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] |
Tipo |
info:eu-repo/semantics/preprint Preprints, Working Papers, ... |