929 resultados para HIGH-SPEED


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient flow patterns and bubble slug lengths were investigated with oxygen gas (O-2) bubbles produced by catalytic chemical reactions using a high speed camera bonded with a microscope. The microreactor consists of an inlet liquid plenum, nine parallel rectangular microchannels followed by a micronozzle, using the MEMS fabrication technique. The etched surface was deposited by the thin platinum film, which is acted as the catalyst. Experiments were performed with the inlet mass concentration of the hydrogen peroxide from 50% to 90% and the pressure drop across the silicon chip from 2.5 to 20.0 kPa. The silicon chip is directly exposed in the environment thus the heat released via the catalytic chemical reactions is dissipated into the environment and the experiment was performed at the room temperature level. It is found that the two-phase flow with the catalytic chemical reactions display the cyclic behavior. A full cycle consists of a short fresh liquid refilling stage, a liquid decomposition stage followed by the bubble slug flow stage. At the beginning of the bubble slug flow stage, the liquid slug number reaches maximum, while at the end of the bubble slug flow stage the liquid slugs are quickly flushed out of the microchannels. Two or three large bubbles are observed in the inlet liquid plenum, affecting the two-phase distributions in microchannels. The bubble slug lengths, cycle periods as well as the mass flow rates are analyzed with different mass concentrations of hydrogen peroxide and pressure drops. The bubble slug length is helpful for the selection of the future microreactor length ensuring the complete hydrogen peroxide decomposition. Future studies on the temperature effect on the transient two-phase flow with chemical reactions are recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a novel X-ray frame camera with variable exposure time that is based on double-gated micro-channel plates (MCP). Two MCPs are connected so that their channels form a Chevron-MCP structure, and four parallel micro-strip lines (MSLs) are deposited on each surface of the Chevron-MCP. The MSLs on opposing surfaces of the Chevron-MCP are oriented normal to each other and subjected to high voltage. The MSLs on the input and output surfaces are fed high voltage pulses to form a gating action. In forming two-dimensional images, modifying the width of the gating pulse serves to set exposure times (ranging from ps to ms) and modifying the delay between each gating pulse serves to set capture times. This prototype provides a new tool for high-speed X-ray imaging, and this paper presents both simulations and experimental results obtained with the camera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the data processing technologies of interferential spectrometer, a sort of real-time data processing system on chip of interferential imaging spectrometer was studied based on large capacitance and high speed field programmable gate array( FPGA) device. The system integrates both interferograrn sampling and spectrum rebuilding on a single chip of FPGA and makes them being accomplished in real-time with advantages such as small cubage, fast speed and high reliability. It establishes a good technical foundation in the applications of imaging spectrometer on target detection and recognition in real-time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A matrix analysis for free-space switching networks, such as perfect shuffle-exchange omega, crossover and Banyan is presented. On the basis of matrix analysis, the equivalence of these three switching networks and the route selection between input and output ports are simply explained. Furthermore, an optical crossover switching network, where MQW SEED arrays are used as electrically addressed four-function interchange nodes, is described and the optical crossover interconnection of 64 x 64, and high-speed four-function, interchange nodes is demonstrated in the experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dependence of the inversion-layer thickness on the film thickness in thin-film SOI structure is analyzed theoretically by using computer simulation. A new concept and parameter, the critical thickness of thin film all-bulk inversion, is introduced for the design of thin-film MOS/SOI devices. It is necessary to select the film thickness T(s1) close to the all-bulk strong inversion critical thickness in order to get high-speed and high-power operation of ultra-thin film MOS/SOI devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an LC VCO with auto-amplitude control (AAC), in which pMOS FETs are used,and the varactors are directly connected to ground to widen the linear range of Kvco. The AAC circuitry adds little noise to the VCO but provides it with robust performance over a wide temperature and carrier frequency range.The VCO is fabricated in a chartered 50GHz 0.35μm SiGe BiCMOS process. The measurements show that it has - 127. 27dBc/Hz phase noise at 1MHz offset and a linear gain of 32.4MHz/V between 990MHz and 1.14GHz.The whole circuit draws 6. 6mA current from 5V supply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetector operating at 1.3 mum with the full-width at half-maximum of 5.5 nm was demonstrated. The GaInNAs RCE photodetector was grown by molecular-beam epitaxy using an ion-removed dc-plasma cell as nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature that is very beneficial for applications in long-wavelength absorption devices. For a 100-mum diameter RCE photodetector, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3-dB bandwidth is 308 MHz. The reasons resulting in the poor high speed property were analyzed. The tunable wavelength of 18 nm with the angle of incident light was observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we proposed a single ridge waveguide electroabsorption modulated distributed feedback laser (EML) for long-haul high-speed optical fiber communication system. This EML was successfully fabricated by two step metal organic vapor phase epitaxy (MOVPE) including selective area growth (SAG) and helium partially implantation. No obvious changes of the threshold current (< 0.2 mA), extinction ratio (< 0.1 dB), output power (< 0.2 dBm) and isolation resistance were achieved in the preliminary aging test. With 2.5 Gb/s NRZ modulation, no power penalty was observed after the optical signal was transmitted through 280 Km normal single mode fiber.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fe is still the commonly used dopant to fabricate semi-insulating(SI) InP, a key material for high-speed electronic and optoelectronic devices. High resolved absorption spectra of the internal d-d shell transitions at Fe2+ in InP and the related phonon sidebands and a series of iron related absorption Lines are presented. Detailed infrared absorption study of the characteristic spectra of four zero-phonon lines(ZPLs), which are attributed to transitions within the 5D ground state of Fe2+ (3d(6)) on the indium site in a tetrahedral crystal field of phosphorus atoms and their temperature effects are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Open-tube Ga diffusion into a SiO2/Si structure was used for fabrication of the high speed thyristor. The advantages of open-tube Ga diffusion are as follows; it is easier to operate and easier to control the profile of the Ga concentration during processing, a clean surface, which is free from alloy spots can be obtained, this technique ensures to improve the on-state characteristics and dynamic characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.