895 resultados para Fourier-transform infrared spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN nanorods with vertebra-like morphology were synthesized by nitriding Ga2O3/ZnO films at 1000 degrees C for 20min. Ga2O3 thin films and ZnO middle layers were pre-deposited in turn on Si(111) substrates by r.f. magnetron sputtering system. In the flowing ammonia ambient, ZnO was reducted to Zn and Zu sublimated at 1000 degrees C. Ga2O3 was reducted to Ga2O and Ga2O reacted with NH3 to synthesize GaN nanorods in the help of the sublimation of Zn. The structure and morphology of the nanorods were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), The composition of GaN nanorods was studied by energy dispersive spectroscopy (EDS) and fourier transform infrared (FTIR) system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new discrimination method for the maize seed varieties based on the near-infrared spectroscopy was proposed. The reflectance spectra of maize seeds were obtained by a FT-NIR spectrometer (12 000-4 000 cm(-1)). The original spectra data were preprocessed by first derivative method. Then the principal component analysis (PCA) was used to compress the spectra data. The principal components with the cumulate reliabilities more than 80% were used to build the discrimination models. The model was established by Psi-3 neuron based on biomimetic pattern recognition (BPR). Especially, the parameter of the covering index was proposed to assist to discriminating the variety of a seed sample. The authors tested the discrimination capability of the model through four groups of experiments. There were 10, 18, 26 and 34 varieties training the discrimination models in these experiments, respectively. Additionally, another seven maize varieties and nine wheat varieties were used to test the capability of the models to reject the varieties not participating in training the models. Each group of the experiment was repeated three times by selecting different training samples at random. The correct classification rates of the models in the four-group experiments were above 91. 8%. The correct rejection rates for the varieties not participating in training the models all attained above 95%. Furthermore, the performance of the discrimination models did not change obviously when using the different training samples. The results showed that this discrimination method can not only effectively recognize the maize seed varieties, but also reject the varieties not participating in training the model. It may be practical in the discrimination of maize seed varieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.