918 resultados para Coronarografia Imaging cardiaco CardioTC CardioRM Cuore
Resumo:
The precise atomic structure of activated carbon is unknown, despite its huge commercial importance in the purification of air and water. Diffraction methods have been extensively applied to the study of microporous carbons, but cannot provide an unequivocal identification of their structure. Here we show that the structure of a commercial activated carbon can be imaged directly using aberration-corrected transmission electron microscopy. Images are presented both of the as-produced carbon and of the carbon following heat treatment at 2000 degrees C. In the 2000 degrees C carbon clear evidence is found for the presence of pentagonal rings, suggesting that the carbons have a fullerene-related structure. Such a structure would help to explain the properties of activated carbon, and would also have important implications for the modelling of adsorption on microporous carbons.
Resumo:
The use of light microscopy and DMACA staining strongly suggested that plant and animal cell nuclei act as sinks for flavanols [1, 2]. Detailed uv-vis spectroscopic titration experiments indicated that histone proteins are the likely binding sites in the nucleus [2]. Here we report the development of a multi-photon excitation microscopy technique combined with fluorescent lifetime measurements of flavanols. Using this technique, (+) catechin, (-) epicatechin and (-) epigallocatechin gallate (EGCG) showed strikingly different excited state lifetimes in solution. Interaction of histone proteins with flavanols was indicated by the appearance of a significant τ2-component of 1.7 to 4.0ns. Tryptophan interference could be circumvented in the in vivo fluorescence lifetime imaging microscopy (FLIM) experiments with 2-photon excitation at 630nm. This enabled visualisation and semi-quantitative measurements that demonstrated unequivocally the absorption of (+)catechin, (-)epicatechin and EGCG by nuclei of onion cells. 3D FLIM revealed for the first time that externally added EGCG penetrated the whole nucleus in onion cells. The relative proportions of EGCG in cytoplasm: nucleus: nucleoli were ca. 1:10:100. FLIM experiments may therefore facilitate probing the health effects of EGCG, which is the major constituent of green tea.
Resumo:
Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ∼1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ2 = 1.9–3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea.
Resumo:
This book investigates the challenges that the presence of digital imaging within the cinematic frame can pose for the task of interpretation. Applying close textual analysis to a series of case studies, the book demystifies the relationship of digital imaging to processes of watching and reading films, and develops a methodology for approaching the digital in popular cinema. In doing so, the study places contemporary digital imaging practice in relation to historical traditions of filmmaking and special effects practice, and proposes a fresh, flexible approach the the close reading of film that can take appropriate account of the presence of the digital.
Resumo:
Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.
The multisensory attentional consequences of tool use: a functional magnetic resonance imaging study
Resumo:
Background: Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings: We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance: These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use
Resumo:
Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.
Resumo:
Pulsed terahertz imaging is being developed as a technique to image obscured mural paintings. Due to significant advances in terahertz technology, portable systems are now capable of operating in unregulated environments and this has prompted their use on archaeological excavations. August 2011 saw the first use of pulsed terahertz imaging at the archaeological site of Çatalhöyük, Turkey, where mural paintings dating from the Neolithic period are continuously being uncovered by archaeologists. In these particular paintings the paint is applied onto an uneven surface, and then covered by an equally uneven surface. Traditional terahertz data analysis has proven unsuccessful at sub-surface imaging of these paintings due to the effect of these uneven surfaces. For the first time, an image processing technique is presented, based around Gaussian beam-mode coupling, which enables the visualization of the obscured painting.
Resumo:
The chemical specificity of terahertz spectroscopy, when combined with techniques for sub-wavelength sensing, is giving new understanding of processes occurring at the nanometre scale in biological systems and offers the potential for single molecule detection of chemical and biological agents and explosives. In addition, terahertz techniques are enabling the exploration of the fundamental behaviour of light when it interacts with nanoscale optical structures, and are being used to measure ultrafast carrier dynamics, transport and localisation in nanostructures. This chapter will explain how terahertz scale modelling can be used to explore the fundamental physics of nano-optics, it will discuss the terahertz spectroscopy of nanomaterials, terahertz near-field microscopy and other sub-wavelength techniques, and summarise recent developments in the terahertz spectroscopy and imaging of biological systems at the nanoscale. The potential of using these techniques for security applications will be considered.
Resumo:
Terahertz pulse imaging (TPI) is a novel noncontact, nondestructive technique for the examination of cultural heritage artifacts. It has the advantage of broadband spectral range, time-of-flight depth resolution, and penetration through optically opaque materials. Fiber-coupled, portable, time-domain terahertz systems have enabled this technique to move out of the laboratory and into the field. Much like the rings of a tree, stratified architectural materials give the chronology of their environmental and aesthetic history. This work concentrates on laboratory models of stratified mosaics and fresco paintings, specimens extracted from a neolithic excavation site in Catalhoyuk, Turkey, and specimens measured at the medieval Eglise de Saint Jean-Baptiste in Vif, France. Preparatory spectroscopic studies of various composite materials, including lime, gypsum and clay plasters are presented to enhance the interpretation of results and with the intent to aid future computer simulations of the TPI of stratified architectural material. The breadth of the sample range is a demonstration of the cultural demand and public interest in the life history of buildings. The results are an illustration of the potential role of TPI in providing both a chronological history of buildings and in the visualization of obscured wall paintings and mosaics.