925 resultados para Convex Duality
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Analysis of the taphonomic signatures of a well preserved, silicifled coquina (Pinzonella neotropica assemblage) from the Camaquã outcrop, upper part of the Corumbataí Formation (Late Permian), in the Rio Claro region, state of Sáo Paulo, allowed interpretation of processes involved in its origin as related to high energy events (storms). The coquina occurs as a lenticular body, 2-11 cm thick and extending laterally for about 120 m. Basal contact of the coquina is sharp and erosive. Its upper contact is sharp. The concentration is dominated by pelecypods including the shallow burrowers (Pinzonella neotropica, Jacquesia brasiliensis), intermediate burrower (Pyramus anceps) and semi-infaunal forms (Naiadopsis lamellosus). All these species are suspension feeders. Besides sand-sized or even smaller shell fragments, there occur disarticulated, complete shells which are commonly abraded but do not show any signs of bioerosion or incrustation. In vertical side view, the shells are mainly convex-up, nested or stacked, while in plan-view they show random orientation. Multiple discontinuous grading is visible. These taphonomic signatures suggest that the origin of the skeletal accumulation is related to high energy events (possibly storm flows) in a proximal environment. The amalgamated nature of the Camaquã coquina records several episodes of erosion and deposition.
Resumo:
Analog networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed. The one-dimensional net can be used as a building block in multi-dimensional networks for optimizing objective functions of several variables.
Resumo:
Piecewise-Linear Programming (PLP) is an important area of Mathematical Programming and concerns the minimisation of a convex separable piecewise-linear objective function, subject to linear constraints. In this paper a subarea of PLP called Network Piecewise-Linear Programming (NPLP) is explored. The paper presents four specialised algorithms for NPLP: (Strongly Feasible) Primal Simplex, Dual Method, Out-of-Kilter and (Strongly Polynomial) Cost-Scaling and their relative efficiency is studied. A statistically designed experiment is used to perform a computational comparison of the algorithms. The response variable observed in the experiment is the CPU time to solve randomly generated network piecewise-linear problems classified according to problem class (Transportation, Transshipment and Circulation), problem size, extent of capacitation, and number of breakpoints per arc. Results and conclusions on performance of the algorithms are reported.
Resumo:
In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.
Resumo:
Pasti, Sorokin, and Tonin have recently constructed manifestly Lorentz-invariant actions for self-dual field strengths and for Maxwell fields with manifest electromagnetic duality. Using the method of Deser et al., we generalize these actions in the presence of sources.
Resumo:
Using an infinite number of fields, we construct actions for D = 4 self-dual Yang-Mills with manifest Lorentz invariance and for D = 10 super-Yang-Mills with manifest super-Poincaré invariance. These actions are generalizations of the covariant action for the D = 2 chiral boson which was first studied by McClain, Wu, Yu and Wotzasek.
Resumo:
The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull H of the zeros of p. It is proved that, actually, a subdomain of H contains the critical points of p. ©1998 American Mathematical Society.
Resumo:
In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and some related models. A connection between topological mass generation in 3D and mass generation according to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also pointed out.
Resumo:
In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful property of the duality transformations in order to generate a new field. The generalized propagator can be written in terms of the primitive one (first order), and also the respective order and disorder correlation functions. Some conclusions about the charge screening and magnetic flux were established. ©1999 The American Physical Society.
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An invex constrained nonsmooth optimization problem is considered, in which the presence of an abstract constraint set is possibly allowed. Necessary and sufficient conditions of optimality are provided and weak and strong duality results established. Following Geoffrion's approach an invex nonsmooth alternative theorem of Gordan type is then derived. Subsequently, some applications on multiobjective programming are then pursued. © 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.