Analog nonderivative optimizers


Autoria(s): Teixeira, Marcelo C M; Zak, Stanislaw H.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/01/1997

Resumo

Analog networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed. The one-dimensional net can be used as a building block in multi-dimensional networks for optimizing objective functions of several variables.

Formato

3592-3596

Identificador

http://dx.doi.org/10.1109/ACC.1997.609492

Proceedings of the American Control Conference, v. 6, p. 3592-3596.

0743-1619

http://hdl.handle.net/11449/64990

10.1109/ACC.1997.609492

WOS:A1997BJ29B00769

2-s2.0-0030686202

Idioma(s)

eng

Relação

Proceedings of the American Control Conference

Direitos

closedAccess

Palavras-Chave #Nonlinear programming #Object oriented programming #Problem solving #Analog nonderivative optimizers #Optimization
Tipo

info:eu-repo/semantics/conferencePaper