876 resultados para visual analog scale
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
This paper reports on the new literacy demands in the middle years of schooling project in which the affordances of placed-based pedagogy are being explored through teacher inquiries and classroom-based design experiments. The school is located within a large-scale urban renewal project in which houses are being demolished and families relocated. The original school buildings have recently been demolished and replaced by a large ‘superschool’ which serves a bigger student population from a wider area. Drawing on both quantitative and qualitative data, the teachers reported that the language literacy learning of students (including a majority of students learning English as a second language) involved in the project exceeded their expectations. The project provided the motivation for them to develop their oral language repertoires, by involving them in processes such as conducting interviews with adults for their oral histories, through questioning the project manager in regular meetings, and through reporting to their peers and the wider community at school assemblies. At the same time students’ written and multimodal documentation of changes in the neighbourhood and the school grounds extended their literate and semiotic repertoires as they produced books, reports, films, powerpoints, visual designs and models of structures.
Resumo:
Computer worms represent a serious threat for modern communication infrastructures. These epidemics can cause great damage such as financial losses or interruption of critical services which support lives of citizens. These worms can spread with a speed which prevents instant human intervention. Therefore automatic detection and mitigation techniques need to be developed. However, if these techniques are not designed and intensively tested in realistic environments, they may cause even more harm as they heavily interfere with high volume communication flows. We present a simulation model which allows studies of worm spread and counter measures in large scale multi-AS topologies with millions of IP addresses.
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Monetite is a phosphate mineral formed by the reaction of the chemicals in bat guano with calcite substrates and is commonly found in caves. The analog of the mineral monetite CaHPO4 has been synthesized and the Raman and infrared spectra of the natural monetite originating from the Murra-el-elevyn Cave, Eucla, Western Australia, compared. Monetite is characterized by a complex set of phosphate bands that arise because of two sets of pairs of phosphate units in the unit cell. Raman and infrared bands are assigned to HPO4(2-), OH stretching and bending vibrations. Infrared bands at 1346 and 1402 cm−1 are assigned to POH deformation modes. Vibrational spectroscopy confirms the presence of monetite in the cave system.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions
Resumo:
Pretreatment of sugarcane bagasse with acidified aqueous glycerol solution was evaluated at both laboratory and pilot scales. Laboratory scale pretreatment (4.00 g dry mass in 40.00 g liquid) with glycerol solutions containing ≤ 20 wt% water and 1.2 wt% HCl at 130 °C for 60 min resulted in biomass having glucan digestibilities of ≥ 88%. Comparable glucan enzymatic digestibility of 90% was achieved with bagasse pretreated at pilot scale (10 kg dry mass in 60 kg liquid) using a glycerol solution containing 0.4 wt% HCl and 17 wt% water at 130 °C for 15 min. We attribute more efficient pretreatment at pilot scale (despite shorter reaction time and reduced acid content) to improved mixing and heat transfer in a horizontal reactor. Pretreatment of sugarcane bagasse with acid-catalysed glycerol solutions likely produces glycerol-glycosides, which together with hydrolysed lignin are potential substrates for the production of biopolymers.
Resumo:
Background: Antibiotic overuse is influenced by several factors that can only be measured using a valid and reliable psychosocial measurement instrument. This study aims to establish translation and early stage validation of an instrument recently developed by this research team to measure factors influencing the overuse of antibiotics in children with upper respiratory tract infections in Saudi Arabia. Method: The content evaluation panel was composed of area experts approached using the Delphi Technique. Experts were provided with the questionnaires iteratively, on a three-round basis until consensus on the relevance of items was reached independently. Translation was achieved by adapting Brislin’s model of translation. Results: After going through the iterative process with the experts, consensus was reached to 58 items (including demographics). Experts also pointed out some issues related to ambiguity and redundancy in some items. A final Arabic version was produced from the translation process. Conclusion: This study produced preliminary validation of the developed instrument from the experts’ contributions. Then, the instrument was translated from English to Arabic. The instrument will undergo further validation steps in the future, such as construct validity.
Resumo:
Background Antibiotics overuse is a global public health issue influenced by several factors, of which some are parent-related psychosocial factors that can only be measured using valid and reliable psychosocial measurement instruments. The PAPA scale was developed to measure these factors and the content validity of this instrument was assessed. Aim This study further validated the recently developed instrument in terms of (1) face validity and (2) construct validity including: deciding the number and nature of factors, and item selection. Methods Questionnaires were self-administered to parents of children between the ages of 0 and 12 years old. Parents were conveniently recruited from schools’ parental meetings in the Eastern Province, Saudi Arabia. Face validity was assessed with regards to questionnaire clarity and unambiguity. Construct validity and item selection processes were conducted using Exploratory factor analysis. Results Parallel analysis and Exploratory factor analysis using principal axis factoring produced six factors in the developed instrument: knowledge and beliefs, behaviours, sources of information, adherence, awareness about antibiotics resistance, and parents’ perception regarding doctors’ prescribing behaviours. Reliability was assessed (Cronbach’s alpha = 0.78) which demonstrates the instrument as being reliable. Conclusion The ‘factors’ produced in this study coincide with the constructs contextually identified in the development phase of other instruments used to study antibiotic use. However, no other study considering perceptions of antibiotic use had gone beyond content validation of such instruments. This study is the first to constructively validate the factors underlying perceptions regarding antibiotic use in any population and in parents in particular.
Resumo:
Introduction To date, there has been little systematic, quantitative research on the links between academic pressure and mental health among adolescents in Asia, and none in Vietnam. In part, this is because of a lack of appropriate tools to measure this complex phenomenon. This study was to validate the Educational Stress Scale for Adolescents (ESSA), developed and tested in China, with the aim of fostering further research in Asia. Methods A total of 1283 students were recruited in 3 secondary schools and 3 high schools in Ho Chi Minh City, Vietnam. Anonymous, selfreport questionnaires included the ESSA and previously validated measures of mental health. Results Among the 1226 questionnaires available, 54% of respondents were female. The mean age was 15.3 years. Students reported substantial study burden. The ESSA had good internal consistency, and factorial validity and concurrent validity were established. Conclusion The ESSA is a suitable measure for school-based mental health research in Asia.
Resumo:
Self reported driving behaviour in the occupational driving context has typically been measured through scales adapted from the general driving population (i.e. the Manchester Driver Behaviour Questionnaire (DBQ)). However, research suggests that occupational driving is influenced by unique factors operating within the workplace environment, and thus, a behavioural scale should reflect those behaviours prevalent and unique within the driving context. To overcome this limitation, developed the Occupational Driver Behaviour Questionnaire (ODBQ) which utilises a relevant theoretical model to assess the impact of the broader workplace context on driving behaviour. Although the theoretical argument has been established, research is yet to examine whether the ODBQ or the DBQ is a more sensitive measure of the workplace context. As such, this paper identifies selected organisational factors (i.e. safety climate and role overload) as predictors of the DBQ and the ODBQ and compares the relative predictive value in both models. In undertaking this task, 248 occupational drivers were recruited from a community-oriented nursing population. As predicted, hierarchical regression analyses revealed that the organisational factors accounted for a significantly greater proportion of variance in the ODBQ than the DBQ. These findings offer a number of practical and theoretical applications for occupational driving practice and future research.
Resumo:
Background It has been proposed that the feral horse foot is a benchmark model for foot health in horses. However, the foot health of feral horses has not been formally investigated. Objectives To investigate the foot health of Australian feral horses and determine if foot health is affected by environmental factors, such as substrate properties and distance travelled. Methods Twenty adult feral horses from five populations (n = 100) were investigated. Populations were selected on the basis of substrate hardness and the amount of travel typical for the population. Feet were radiographed and photographed, and digital images were surveyed by two experienced assessors blinded to each other's assessment and to the population origin. Lamellar samples from 15 feet from three populations were investigated histologically for evidence of laminitis. Results There was a total of 377 gross foot abnormalities identified in 100 left forefeet. There were no abnormalities detected in three of the feet surveyed. Each population had a comparable prevalence of foot abnormalities, although the type and severity of abnormality varied among populations. Of the three populations surveyed by histopathology, the prevalence of chronic laminitis ranged between 40% and 93%. Conclusions Foot health appeared to be affected by the environment inhabited by the horses. The observed chronic laminitis may be attributable to either nutritional or traumatic causes. Given the overwhelming evidence of suboptimal foot health, it may not be appropriate for the feral horse foot to be the benchmark model for equine foot health.
Resumo:
This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts