Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites


Autoria(s): Alamusi, Affa; Hu, Ning; Qiu, Jianhui; Li, Yuan; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao; Liu, Yaolu; Ning, Huiming; Wu, Liangke; Li, Jinhua; Yuan, Weifeng; Watanabe, Tomonori; Yan, Cheng; Zhang, Yajun
Data(s)

01/01/2013

Resumo

In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/58395/

Publicador

Springer

Relação

http://eprints.qut.edu.au/58395/1/Final_version_Nanoscale_Research_Letters_Cheng_Yan.pdf

DOI:10.1186/1556-276X-8-15

Alamusi, Affa, Hu, Ning, Qiu, Jianhui, Li, Yuan, Chang, Christiana, Atobe, Satoshi, Fukunaga, Hisao, Liu, Yaolu, Ning, Huiming, Wu, Liangke, Li, Jinhua, Yuan, Weifeng, Watanabe, Tomonori, Yan, Cheng, & Zhang, Yajun (2013) Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Research Letters, 8(15).

Direitos

2013 Alamusi et al.; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fonte

School of Chemistry, Physics & Mechanical Engineering; Science & Engineering Faculty

Palavras-Chave #091202 Composite and Hybrid Materials #091307 Numerical Modelling and Mechanical Characterisation #091308 Solid Mechanics #Polymer-matrix composites (PMC) #Thermal properties #Numerical analysis #Carbon nanotube (CNT)
Tipo

Journal Article