893 resultados para unknown-input estimation
Resumo:
In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. (C) 2014 Optical Society of America
Resumo:
A method to estimate the Hall-Petch coefficient k for yield strength and flow stress of steels through nanoindentation experiments is proposed. While determination of k(f) for flow stress is on the basis of grain boundary strengthening evaluated by sharp indentation, k(y) for yield strength was computed with pop-in data from spherical indentations. Good agreement between estimated and literature data, obtained from the tensile tests, validates the proposed methodology. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.
Resumo:
The objective of this study is to evaluate the ability of a European chemistry transport model, `CHIMERE' driven by the US meteorological model MM5, in simulating aerosol concentrations dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.
Resumo:
This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information and a temporal measure named the maximum weighted inner product. For validation, several experiments are carried out on the entire TIMIT database and two of the CMU Arctic corpora. The performance of the proposed method compares well with three state-of-the-art techniques. (C) 2014 Acoustical Society of America
Resumo:
In this paper, we propose a multiple-input multiple-output (MIMO) receiver algorithm that exploits channel hardening that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes, where is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the matrix. We also propose a simple estimation scheme which directly obtains an estimate of (instead of an estimate of), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the channel hardening-exploiting message passing (CHEMP) receiver. The proposed CHEMP receiver achieves very good performance in large-scaleMIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.
Resumo:
This paper proposes an optical flow algorithm by adapting Approximate Nearest Neighbor Fields (ANNF) to obtain a pixel level optical flow between image sequence. Patch similarity based coherency is performed to refine the ANNF maps. Further improvement in mapping between the two images are obtained by fusing bidirectional ANNF maps between pair of images. Thus a highly accurate pixel level flow is obtained between the pair of images. Using pyramidal cost optimization, the pixel level optical flow is further optimized to a sub-pixel level. The proposed approach is evaluated on the middlebury dataset and the performance obtained is comparable with the state of the art approaches. Furthermore, the proposed approach can be used to compute large displacement optical flow as evaluated using MPI Sintel dataset.
Resumo:
Electromagnetic Articulography (EMA) technique is used to record the kinematics of different articulators while one speaks. EMA data often contains missing segments due to sensor failure. In this work, we propose a maximum a-posteriori (MAP) estimation with continuity constraint to recover the missing samples in the articulatory trajectories recorded using EMA. In this approach, we combine the benefits of statistical MAP estimation as well as the temporal continuity of the articulatory trajectories. Experiments on articulatory corpus using different missing segment durations show that the proposed continuity constraint results in a 30% reduction in average root mean squared error in estimation over statistical estimation of missing segments without any continuity constraint.
Resumo:
Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.
Resumo:
The NO2 center dot center dot center dot I supramolecular synthon is a halogen bonded recognition pattern that is present in the crystal structures of many compounds that contain these functional groups. These synthons have been previously distinguished as P, Q, and R types using topological and geometrical criteria. A five step IR spectroscopic sequence is proposed here to distinguish between these synthon types in solid samples. Sets of known compounds that contain the P, Q, and R synthons are first taken to develop IR spectroscopic identifiers for them. The identifiers are then used to create graded IR filters that sieve the synthons. These filters contain signatures of the individual NO2 center dot center dot center dot I synthons and may be applied to distinguish between P, Q, and R synthon varieties. They are also useful to identify synthons that are of a borderline character, synthons in disordered structures wherein the crystal structure in itself is not sufficient to distinguish synthon types, and in the identification of the NO2 center dot center dot center dot I synthons in compounds with unknown crystal structures. This study establishes clear differences for the three different geometries P, Q, and Rand in the chemical differences in the intermolecular interactions contained in the synthons. Our IR method can be conveniently employed when single crystals are not readily available also in high throughput analysis. It is possible that such identification may also be adopted as an input for crystal structure prediction analysis of compounds with unknown crystal structures.
Resumo:
Growing demand for urban built spaces has resulted in unprecedented exponential rise in production and consumption of building materials in construction. Production of materials requires significant energy and contributes to pollution and green house gas (GHG) emissions. Efforts aimed at reducing energy consumption and pollution involved with the production of materials fundamentally requires their quantification. Embodied energy (EE) of building materials comprises the total energy expenditure involved in the material production including all upstream processes such as raw material extraction and transportation. The current paper deals with EE of a few common building materials consumed in bulk in Indian construction industry. These values have been assessed based on actual industrial survey data. Current studies on EE of building materials lack agreement primarily with regard to method of assessment and energy supply assumptions (whether expressed in terms of end use energy or primary energy). The current paper examines the suitability of two basic methods; process analysis and input-output method and identifies process analysis as appropriate for EE assessment in the Indian context. A comparison of EE values of building materials in terms of the two energy supply assumptions has also been carried out to investigate the associated discrepancy. The results revealed significant difference in EE of materials whose production involves significant electrical energy expenditure relative to thermal energy use. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Storage of water within a river basin is often estimated by analyzing recession flow curves as it cannot be `instantly' estimated with the aid of available technologies. In this study we explicitly deal with the issue of estimation of `drainable' storage, which is equal to the area under the `complete' recession flow curve (i.e. a discharge vs. time curve where discharge continuously decreases till it approaches zero). But a major challenge in this regard is that recession curves are rarely `complete' due to short inter-storm time intervals. Therefore, it is essential to analyze and model recession flows meaningfully. We adopt the wellknown Brutsaert and Nieber analytical method that expresses time derivative of discharge (dQ/dt) as a power law function of Q : -dQ/dt = kQ(alpha). However, the problem with dQ/dt-Q analysis is that it is not suitable for late recession flows. Traditional studies often compute alpha considering early recession flows and assume that its value is constant for the whole recession event. But this approach gives unrealistic results when alpha >= 2, a common case. We address this issue here by using the recently proposed geomorphological recession flow model (GRFM) that exploits the dynamics of active drainage networks. According to the model, alpha is close to 2 for early recession flows and 0 for late recession flows. We then derive a simple expression for drainable storage in terms the power law coefficient k, obtained by considering early recession flows only, and basin area. Using 121 complete recession curves from 27 USGS basins we show that predicted drainable storage matches well with observed drainable storage, indicating that the model can also reliably estimate drainable storage for `incomplete' recession events to address many challenges related to water resources. (C) 2014 Elsevier Ltd. All rights reserved.