972 resultados para structural analysis
Resumo:
Proteins containing PilZ domains are widespread in Gram-negative bacteria and have recently been shown to be involved in the control of biofilm formation, adherence, aggregation, virulence-factor production and motility. Furthermore, some PilZ domains have recently been shown to bind the second messenger bis(3'-> 5') cyclic diGMP. Here, the cloning, expression, purification and crystallization of PilZ(XAC1133), a protein consisting of a single PilZ domain from Xanthomonas axonopodis pv. citri, is reported. The closest PilZ(XAC1133) homologues in Pseudomonas aeruginosa and Neisseria meningitidis control type IV pilus function. Recombinant PilZ(XAC1133) containing selenomethionine was crystallized in space group P6(1). The unit-cell parameters were a = 62.125, b = 62.125, c = 83.543 angstrom. These crystals diffracted to 1.85 angstrom resolution and a MAD data set was collected at a synchrotron source. The calculated Matthews coefficient suggested the presence of two PilZ(XAC1133) molecules in the asymmetric unit.
Resumo:
LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL32(21-272), which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL32(21-272) crystals diffracted to 2.25 angstrom resolution at a synchrotron source. The space group was P3(1)21 or P3(2)21 and the unit-cell parameters were a = b = 126.7, c = 96.0 angstrom.
Resumo:
Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.
Resumo:
The filamentous fungus Trichoderma harzianum has a considerable cellulolytic activity that is mediated by a complex of enzymes which are essential for the hydrolysis of microcrystalline cellulose. These enzymes were produced by the induction of T. harzianum with microcrystalline cellulose (Avicel) under submerged fermentation in a bioreactor. The catalytic core domain (CCD) of cellobiohydrolase I (CBHI) was purified from the extracellular extracts and submitted to robotic crystallization. Diffraction-quality CBHI CCD crystals were grown and an X-ray diffraction data set was collected under cryogenic conditions using a synchrotron-radiation source.
Resumo:
The title 2:1 complex of 3-nitrophenol (MNP) and 4,4'-bipyridyl N, N'-dioxide (DPNO), 2C(6)H(5)NO(3)center dot C(10)H(8)N(2)O(2) or 2MNP center dot DPNO, crystallizes as a centrosymmetric three-component adduct with a dihedral angle of 59.40 (8)degrees between the planes of the benzene rings of MNP and DPNO (the DPNO moiety lies across a crystallographic inversion centre located at the mid-point of the C-C bond linking its aromatic rings). The complex owes its formation to O-H center dot center dot center dot O hydrogen bonds [O center dot center dot center dot O = 2.605 (3) angstrom]. Molecules are linked by intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot N interactions forming R(2)(1) (6) and R(2)(2) (10) rings, and R(6)(6) (34) and R(4)(4) (26) macro-rings, all of which are aligned along the [(1) over bar 01] direction, and R(2)(2) (10) and R(2)(1) (7) rings aligned along the [010] direction. The combination of chains of rings along the [(1) over bar 01] and [010] directions generates the three-dimensional structure. A total of 27 systems containing the DNPO molecule and forming molecular complexes of an organic nature were analysed and compared with the structural characteristics of the dioxide reported here. The N-O distance [1.325 (2) angstrom] depends not only on the interactions involving the O atom at the N-O group, but also on the structural ordering and additional three-dimensional interactions in the crystal structure. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(d,p) level is compared with the molecular structure in the solid state.
Resumo:
The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.
Resumo:
Interleukin-22 (IL-22) is a pleiotropic cytokine that is involved in inflammatory responses. Human IL-22 was incubated with its soluble decoy receptor IL-22BP (IL-22 binding protein) and the IL-22 -IL-22BP complex was crystallized in hanging drops using the vapour-diffusion method. Suitable crystals were obtained from polyethylene glycol solutions and diffraction data were collected to 2.75 angstrom resolution. The crystal belonged to the tetragonal space group P41, with unit-cell parameters a = b = 67.9, c = 172.5 angstrom, and contained two IL-22-IL- 22BP complexes per asymmetric unit.
Resumo:
Chlorocatechol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida (Pp 1,2-CCD) is considered to be an important biotechnological tool owing to its ability to process a broad spectrum of organic pollutants. In the current work, the crystallization, crystallographic characterization and phasing of the recombinant Pp 1,2-CCD enzyme are described. Reddish-brown crystals were obtained in the presence of polyethylene glycol and magnesium acetate by utilizing the vapour-diffusion technique in sitting drops. Crystal dehydration was the key step in obtaining data sets, which were collected on the D03B-MX2 beamline at the CNPEM/MCT - LNLS using a MAR CCD detector. Pp 1,2-CCD crystals belonged to space group P6(1)22 and the crystallographic structure of Pp 1,2-CCD has been solved by the MR-SAD technique using Fe atoms as scattering centres and the coordinates of 3-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus (PDB entry
Resumo:
Glycosylphosphatidylinositol (GPI) anchoring is a common, relevant posttranslational modification of eukaryotic surface proteins. Here, we developed a fast, simple, and highly sensitive (high attomole-low femtomole range) method that uses liquid chromatography-tandem mass spectrometry (LC-MS(n)) for the first large-scale analysis of GPI-anchored molecules (i.e., the GPIome) of a eukaryote, Trypanosoma cruzi, the etiologic agent of Chagas disease. Our genome-wise prediction analysis revealed that approximately 12% of T. cruzi genes possibly encode GPI-anchored proteins. By analyzing the GPIome of T. cruzi insect-dwelling epimastigote stage using LC-MS(n), we identified 90 GPI species, of which 79 were novel. Moreover, we determined that mucins coded by the T. cruzi small mucin-like gene (TcSMUG S) family are the major GPI-anchored proteins expressed on the epimastigote cell surface. TcSMUG S mucin mature sequences are short (56-85 amino acids) and highly O-glycosylated, and contain few proteolytic sites, therefore, less likely susceptible to proteases of the midgut of the insect vector. We propose that our approach could be used for the high throughput GPIomic analysis of other lower and higher eukaryotes. Molecular Systems Biology 7 April 2009; doi:10.1038/msb.2009.13
Resumo:
Al(2)CoO(4)-PbCrO(4) and Al(2)CoO(4)-Pb(2)CrO(5) crystalline powders in different proportions were obtained by the polymeric precursor method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of overlapping decomposition reactions due to different exothermal events, which were identified as H(2)O and NO(x) elimination and polymer pyrolysis. The X-ray diffraction patterns of the xAl(2)CoO(4)-(1 - x)PbCrO(4) and xAl(2)CoO(4)-(1 - x)Pb(2)CrO(5) mixed compounds, with x = 1, 0.75, 0.5, 0.25 and 0, were obtained in the crystalline form with their respective phases, and proved consistent with the nominal compositions. The synthesis of these two systems yielded nine different colors and shades.
Resumo:
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work presents a comparative analysis about the behaviour of pile caps supported by 3 piles subjected to axial loading. Piles with 20 cm and 30 cm diameters were analysed. The main reinforcement was maintained in all the specimens, however, the arrangement of the secondary reinforcement varied. The main reinforcement consisted of steel bars connecting the piles. The secondary reinforcement was made up of: (a) bars going through the piles and through the projection of the column, (b) bars forming a network, and (c) vertical and horizontal stirrups. The main objective was the observation of the pile cap behaviour regarding the cracks and the modes of rupture. The real scale specimens were subjected to experimental tests until failure by rupture. Instruments were placed with the aim to obtain the displacement of the bases, the strains in the main and secondary reinforcement bars, in the compression struts, in the lower and upper nodal zones and in the sides of the caps. None of the caps reached failure by rupture with a load less than 1.12 times the theoretical load. The specimens ruptured due to the cracking of the compression strut and/or the yielding of the reinforcement bars in one direction.
Resumo:
The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.
Resumo:
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.