923 resultados para respirazione, pattern recognition, apprendimento automatico, monitoraggio, segnali biomedici
Resumo:
One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.
Resumo:
In this article the new approach for optimization of estimations calculating algorithms is suggested. It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for pattern recognition.
Resumo:
A novel approach of automatic ECG analysis based on scale-scale signal representation is proposed. The approach uses curvature scale-space representation to locate main ECG waveform limits and peaks and may be used to correct results of other ECG analysis techniques or independently. Moreover dynamic matching of ECG CSS representations provides robust preliminary recognition of ECG abnormalities which has been proven by experimental results.
Resumo:
Given in the report conceptual presentation of the main principles of fractal-complexity Ration of the media and thinking processes of the human was formulated on the bases of the cybernetic interpretation of scientific information (basically from neurophysiology and neuropsychology, containing the interpretation giving the best fit to the authors point of view) and plausible hypothesis's, filling the lack of knowledge.
Resumo:
* Работа выполнена при поддержке РФФИ, гранты 07-01-00331-a и 08-01-00944-a
Resumo:
The method of logic and probabilistic models constructing for multivariate heterogeneous time series is offered. There are some important properties of these models, e.g. universality. In this paper also discussed the logic and probabilistic models distinctive features in comparison with hidden Markov processes. The early proposed time series forecasting algorithm is tested on applied task.
Resumo:
Рассматривается задача структуризации избыточного набора информации, выявления основных закономерностей, содержащихся в нем с помощью аппарата FRiS-функций. В результате решения этой задачи (задачи SDX) на основе исходного множества объектов строится его сокращенное описание в терминах классов и существенных признаков. Данное описание снабжено системой правил, позволяющих восстанавливать значения всех признаков на основе существенных и находить место новым объектам в системе построенных классов.
Resumo:
Разработан и реализован алгоритм выявления фракталоподобных структур в ДНК- последовательностях. Фрактальность трактуется как самоподобие, основанное на свойстве симметрии или комплементарной симметрии. Локальные фракталы интересны своей способностью аккумулировать множественные палиндромно-шпилечные структуры с потенциально возможными регуляторными функциями. Выявлены реальные случаи проявления фрактальности в различных геномах: от вирусов до человека. Рассмотрена возможность использования фракталоподобных структур в качестве маркеров, различающих близкие классы последовательностей.
Resumo:
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Resumo:
ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.
Resumo:
The seminal multiple view stereo benchmark evaluations from Middlebury and by Strecha et al. have played a major role in propelling the development of multi-view stereopsis methodology. Although seminal, these benchmark datasets are limited in scope with few reference scenes. Here, we try to take these works a step further by proposing a new multi-view stereo dataset, which is an order of magnitude larger in number of scenes and with a significant increase in diversity. Specifically, we propose a dataset containing 80 scenes of large variability. Each scene consists of 49 or 64 accurate camera positions and reference structured light scans, all acquired by a 6-axis industrial robot. To apply this dataset we propose an extension of the evaluation protocol from the Middlebury evaluation, reflecting the more complex geometry of some of our scenes. The proposed dataset is used to evaluate the state of the art multiview stereo algorithms of Tola et al., Campbell et al. and Furukawa et al. Hereby we demonstrate the usability of the dataset as well as gain insight into the workings and challenges of multi-view stereopsis. Through these experiments we empirically validate some of the central hypotheses of multi-view stereopsis, as well as determining and reaffirming some of the central challenges.
Resumo:
Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations.
Resumo:
The immune system is perhaps the largest yet most diffuse and distributed somatic system in vertebrates. It plays vital roles in fighting infection and in the homeostatic control of chronic disease. As such, the immune system in both pathological and healthy states is a prime target for therapeutic interventions by drugs-both small-molecule and biologic. Comprising both the innate and adaptive immune systems, human immunity is awash with potential unexploited molecular targets. Key examples include the pattern recognition receptors of the innate immune system and the major histocompatibility complex of the adaptive immune system. Moreover, the immune system is also the source of many current and, hopefully, future drugs, of which the prime example is the monoclonal antibody, the most exciting and profitable type of present-day drug moiety. This brief review explores the identity and synergies of the hierarchy of drug targets represented by the human immune system, with particular emphasis on the emerging paradigm of systems pharmacology. © the authors, publisher and licensee Libertas Academica Limited.
Resumo:
In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.
Resumo:
In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behavior that suggests that long range distances are not estimated accurately, resulting in an increased curvature of the embedding space. Hence, we propose to use a number of manifold learning techniques to compute a low-dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase the class separation. We perform an extensive experimental evaluation on a number of standard graph datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009), random walk (Kashima et al., 2003) and Weisfeiler-Lehman (Shervashidze et al., 2011) kernels. We observe the most significant improvement in the case of the graphlet kernel, which fits with the observation that neglecting the locational information of the substructures leads to a stronger curvature of the embedding manifold. On the other hand, the Weisfeiler-Lehman kernel partially mitigates the locality problem by using the node labels information, and thus does not clearly benefit from the manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to reduce the performance gap between the examined kernels.