Applications of the Sufficiency Principle in Acceleration of Neural Networks Trainig
Data(s) |
04/01/2010
04/01/2010
2003
|
---|---|
Resumo |
One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc. |
Identificador |
1313-0463 |
Idioma(s) |
en |
Publicador |
Institute of Information Theories and Applications FOI ITHEA |
Palavras-Chave | #Neural Networks #Training |
Tipo |
Article |