Оптимизация Оценки Вероятности Ошибочной Классификации в Дискретном Случае


Autoria(s): Неделько, Виктор
Data(s)

15/04/2010

15/04/2010

2009

Resumo

* Работа выполнена при поддержке РФФИ, гранты 07-01-00331-a и 08-01-00944-a

The goal of the paper is to investigate what training sample estimate of misclassification probability would be the best one for the histogram classifier. Certain quality criterion is suggested. The deviation for some estimates, such as resubstitution error (empirical risk), cross validation error (leave-one-out), bootstrap and for the best estimate obtained via some optimization procedure, is calculated and compared for some examples.

Identificador

1313-0455

http://hdl.handle.net/10525/1188

Idioma(s)

other

Publicador

Institute of Information Theories and Applications FOI ITHEA

Palavras-Chave #Pattern Recognition #Classification #Statistical Robustness #Deciding Functions #Complexity #Capacity #Overfitting #Overtraining Problem
Tipo

Article