948 resultados para interactive highway safety design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 188 and Iowa Highway Research Board - Bulletin No. 17. In the design of highway bridges, the 'static live load is multiplied by a factor to compensate for the dynamic effect of moving vehicles. This factor, commonly referred to as an impact factor, is intended to provide for the dynamic response of the bridge to moving loads and suddenly applied forces. Many investigators have published research which contradicts the current impact formula 1,4,17. Some investigators feel that the problem of impact deals not only with the increase in over-all static live load but that it is an integral part of a dynamic load distribution problem. The current expanded highway program with the large number of bridge structures required emphasizes the need for investigating some of the dynamic behavior problems which have been generally ignored by highway engineers. These problems generally result from the inability of a designer to predict the dynamic response of a bridge structure. Many different investigations have been made of particular portions of the overall dynamic problem. The results of these varied investigations are inevitably followed by a number of unanswered questions. Ironically, many of the unanswered questions are those which are of immediate concern in the design of highway bridges, and this emphasizes the need for additional research on the problem of impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pinconnected high-truss single-lane bridge, was selected for a testing program which included ultimate load tests. The purpose of the ultimate load tests, which are summarized in this report, was to relate design and rating procedures presently used in bridge design to the field behavior of this type of truss bridge. The ultimate load tests consisted of ultimate load testing of one span of the bridge, of two I-shaped floorbeams, and of two panels of the timber deck. The theoretical capacity of each of these components is compared with the results from the field tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently there are no guidelines within the Manual on Uniform Traffic Control Devices (MUTCD) on construction phasing and maintenance of traffic (MOT) for retrofit construction and maintenance projects involving innovative geometric designs. The research presented in this report addressed this gap in existing knowledge by investigating the state of the practice of construction phasing and MOT for several types of innovative geometric designs including the roundabout, single point urban interchange (SPUI), diverging diamond interchange (DDI), restricted-crossing left turn (RCUT), median U-turn (MUT), and displaced left turn (DLT). This report provides guidelines for transportation practitioners in developing construction phasing and MOT plans for innovative geometric designs. This report includes MOT Phasing Diagrams to assist in the development of MOT strategies for innovative designs. The MOT Phasing Diagrams were developed through a review of literature, survey, interviews with practitioners, and review of plans from innovative geometric design projects. These diagrams are provided as a tool to assist in improving work zone safety and mobility through construction of projects with innovative geometric designs. The aforementioned synthesis of existing knowledge documented existing practices for these types of designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A contract for Project HR-20 "Treating Loess, Fine Sands and Soft Limestones with Liquid Binders" of the Iowa Highway Research Board was awarded in December, 1951, to the Iowa Engineering Experiment Station of Iowa State University as its Project 295-S. By 1954 the studies of the fine materials and asphalts had progressed quite well, and a method of treating the fine materials, called the atomization process, had been applied. A study was begun in 1954 to see if some of the problems of the atomization process could be solved with the use of foamed asphalt. Foamed asphalt has several advantages. The foaming of asphalt increases its volume, reduces its viscosity, and alters its surface tension so that it will adhere tenaciously to solids. Foamed asphalt displaces moisture from the surface of a solid and coats it with a thin film. Foamed asphalt can permeate deeply into damp soils. In the past these unusual characteristics were considered nuisances to be avoided if possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1982 the Iowa DOT allowed a successful bidder the option of submitting materials and proportions using fly ash to produce a portland cement concrete (PCC) paving mixture to meet a specified compressive strength. The contractor, Irving F. Jensen, received approval for the use of a concrete mixture utilizing 500 lbs. of portland cement and 88 lbs. of fly ash as a replacement of 88 lbs. of portland cement. The PCC mixture was utilized on the Muscatine County US 61 relocation bypass paved as project F-61-4(32)--20-70. A Class "C" fly ash obtained from the Chillicothe electric generating plant approximately 100 miles away was used in the project. This use of fly ash in lieu of portland cement resulted in a cost savings of $64,500 and an energy savings of approximately 16 billion BTU. The compressive strength of this PCC mixture option was very comparable to concrete mixtures produced without the use of fly ash. The pavement has been performing very well. The substitution of fly ash for 15% of the cement has been allowed as a contractor's option since 1984. Due to the cost savings, it has been used in almost all Iowa PCC paving since that time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction New evidence from randomized controlled and etiology of fever studies, the availability of reliable RDT for malaria, and novel technologies call for revision of the IMCI strategy. We developed a new algorithm based on (i) a systematic review of published studies assessing the safety and appropriateness of RDT and antibiotic prescription, (ii) results from a clinical and microbiological investigation of febrile children aged <5 years, (iii) international expert IMCI opinions. The aim of this study was to assess the safety of the new algorithm among patients in urban and rural areas of Tanzania.Materials and Methods The design was a controlled noninferiority study. Enrolled children aged 2-59 months with any illness were managed either by a study clinician using the new Almanach algorithm (two intervention health facilities), or clinicians using standard practice, including RDT (two control HF). At day 7 and day 14, all patients were reassessed. Patients who were ill in between or not cured at day 14 were followed until recovery or death. Primary outcome was rate of complications, secondary outcome rate of antibiotic prescriptions.Results 1062 children were recruited. Main diagnoses were URTI 26%, pneumonia 19% and gastroenteritis (9.4%). 98% (531/541) were cured at D14 in the Almanach arm and 99.6% (519/521) in controls. Rate of secondary hospitalization was 0.2% in each. One death occurred in controls. None of the complications was due to withdrawal of antibiotics or antimalarials at day 0. Rate of antibiotic use was 19% in the Almanach arm and 84% in controls.Conclusion Evidence suggests that the new algorithm, primarily aimed at the rational use of drugs, is as safe as standard practice and leads to a drastic reduction of antibiotic use. The Almanach is currently being tested for clinician adherence to proposed procedures when used on paper or a mobile phone

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influenza vaccines are recommended for administration by the intramuscular route. However, many physicians use the subcutaneous route for patients receiving an oral anticoagulant because this route is thought to induce fewer hemorrhagic side effects. Our aim is to assess the safety of intramuscular administration of influenza vaccine in patients on oral anticoagulation therapy. Methods: Design: Randomised, controlled, single blinded, multi-centre clinical trial. Setting: 4 primary care practices in Barcelona, Spain. Participants: 229 patients on oral anticoagulation therapy eligible for influenza vaccine during the 20032004 season. Interventions: intramuscular administration of influença vaccine in the experimental group (129 patients) compared to subcutaneous administration in the control group (100 patients). Primary outcome: change in the circumference of the arm at the site of injection at 24 hours. Secondary outcomes: appearance of local reactions and pain at 24 hours and at 10 days; change in INR (International Normalized Ratio) at 24 hours and at 10 days. Analysis was by intention to treat using the 95% confidence intervals of the proportions or mean differences. Results: Baseline variables in the two groups were similar. No major side effects or major haemorrhage during the follow-up period were reported. No significant differences were observed in the primary outcome between the two groups. The appearance of local adverse reactions was more frequent in the subcutaneous administration group (37,4% vs. 17,4%, 95% confidence interval of the difference 8,2% to 31,8%). Conclusion: This study shows that the intramuscular administration route of influenza vaccine in patients on anticoagulant therapy does not have more side effects than the subcutaneous administration route

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis gives an overview of the validation process for thermal hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. The cases presented are not exhaustive, but they give a good overview of the work performed by the personnel of Lappeenranta University of Technology (LUT). Large part of the work has been performed in co-operation with the CATHARE-team in Grenoble, France. The design of a Russian type pressurized water reactor, VVER, differs from that of a Western-type PWR. Most of thermal-hydraulic system codes are validated only for the Western-type PWRs. Thus, the codes should be assessed and validated also for VVER design in order to establish any weaknesses in the models. This information is needed before codes can be used for the safety analysis. Theresults of the assessment and validation calculations presented here show that the CATHARE code can be used also for the thermal-hydraulic safety studies for VVER type plants. However, some areas have been indicated which need to be reassessed after further experimental data become available. These areas are mostly connected to the horizontal stem generators, like condensation and phase separation in primary side tubes. The work presented in this thesis covers a large numberof the phenomena included in the CSNI code validation matrices for small and intermediate leaks and for transients. Also some of the phenomena included in the matrix for large break LOCAs are covered. The matrices for code validation for VVER applications should be used when future experimental programs are planned for code validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cardiac arrest causes ischaemic brain injury. Arterial carbon dioxide tension (PaCO2) is a major determinant of cerebral blood flow. Thus, mild hypercapnia in the 24 h following cardiac arrest may increase cerebral blood flow and attenuate such injury. We describe the Carbon Control and Cardiac Arrest (CCC) trial. METHODS/DESIGN: The CCC trial is a pilot multicentre feasibility, safety and biological efficacy randomized controlled trial recruiting adult cardiac arrest patients admitted to the intensive care unit after return of spontaneous circulation. At admission, using concealed allocation, participants are randomized to 24 h of either normocapnia (PaCO2 35 to 45 mmHg) or mild hypercapnia (PaCO2 50 to 55 mmHg). Key feasibility outcomes are recruitment rate and protocol compliance rate. The primary biological efficacy and biological safety measures are the between-groups difference in serum neuron-specific enolase and S100b protein levels at 24 h, 48 h and 72 h. Secondary outcome measure include adverse events, in-hospital mortality, and neurological assessment at 6 months. DISCUSSION: The trial commenced in December 2012 and, when completed, will provide clinical evidence as to whether targeting mild hypercapnia for 24 h following intensive care unit admission for cardiac arrest patients is feasible and safe and whether it results in decreased concentrations of neurological injury biomarkers compared with normocapnia. Trial results will also be used to determine whether a phase IIb study powered for survival at 90 days is feasible and justified. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12612000690853 .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työn tarkoituksena on selvittää, miten käyttötietämystä hyödynnetään prosessisuunnittelussa. Tavoitteena on löytää keinoja parantaa käyttötietämyksen hallintaa suunnitteluprosessin aikana ja selvittää, vaikuttaako tämä prosessisuunnittelun laatuun.Prosessisuunnittelun laatua arvioidaan seitsemällä kriteerillä, jotka ovat investointikustannukset, käyttökustannukset, turvallisuus, ympäristövaikutukset, käytettävyys, innovatiivisuus ja aikataulu. Suunnitteluprosessi jaetaan kolmeen vaiheeseen: esisuunnitteluun, perussuunnitteluun ja detaljisuunnitteluun. Prosessisuunnittelua, investointiprojektia, prosessisuunnittelun laatukriteerejä, suunnitteluprosessin eri vaiheita ja käyttötietämyksen luokittelua tarkastellaan yleisesti. Työssä selvitettiin käyttötietämyksen hyödyntämistä Kemiralla. Aluksi muotoiltiin yleisiä väittämiä käyttötietämyksen hyödyntämisestä Kemiran ulkopuolisten eri alojen asiantuntijoiden haastattelujen perusteella. Tämän jälkeen Kemiran prosessisuunnittelijat arvioivat väittämiä. Arvioiden perusteella tehtiin johtopäätöksiä yleisesti käyttötietämyksen hyödyntämisestä prosessisuunnittelussa. Seuraavaksi haastateltiin kahdessa erityyppisessä case-projektissa mukana olleita henkilöitä ja muotoiltiin yleiset väittämät näihin projekteihin sopiviksi. Projekteissa mukana olleet henkilöt arvioivat väittämiä, ja näiden arvioiden perusteella projekteja vertailtiin keskenään. Lopussa esitetään johtopäätökset kaikkien väittämien arvioiden perusteella. Johtopäätöksenä voidaan todeta, että käyttötietämystä voidaan hyödyntää kaikissa suunnittelun vaiheissa, mutta paras hyöty saadaan perus- ja detaljisuunnittelussa. Käyttötietämyksellä voidaan vaikuttaa joihinkin prosessisuunnittelun laatukriteereihin, kuten esimerkiksi käytettävyyteen ja turvallisuuteen enemmän kuin muihin. Kemiralle suositellaan nykyisten tiedonhallintamenetelmien kehittämistä, jotta käyttötietämyksen saatavuus ja sen siirtäminen paranisi. Pr

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Personalized medicine is a challenging research area in paediatric treatments. Elaborating new paediatric formulations when no commercial forms are available is a common practice in pharmacy laboratories; among these, oral liquid formulations are the most common. But due to the lack of specialized equipment, frequently studies to assure the efficiency and safety of the final medicine cannot be carried out. Thus the purpose of this work was the development, characterization and stability evaluation of two oral formulations of sildenafil for the treatment of neonatal persistent pulmonary hypertension. After the establishment of a standard operating procedure (SOP) and elaboration, the physicochemical stability parameters appearance, pH, particle size, rheological behaviour and drug content of formulations were evaluated at three different temperatures for 90 days. Equally, prediction of long term stability, as well as, microbiological stability was performed. Formulations resulted in a suspension and a solution slightly coloured exhibiting fruity odour. Formulation I (suspension) exhibited the best physicochemical properties including Newtonian behaviour and uniformity of API content above 90% to assure an exact dosification process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Job satisfaction has been a frequently studied concept in organizational behavior. Past research has shown that trust in top management is an important factor influencing job satisfaction. To date, little attention has been paid to safety climate perceptions as a possible predictor of job satisfaction. In our study we investigated the direct and interactive effects of trust in top management and individual-level perceptions of safety climate in predicting job satisfaction. The findings of this study point to the importance of positive perceptions of safety climate on employees' job satisfaction when trust in top management is low.