931 resultados para effective material property
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
In Bazley v Wesley Monash IVF Pty Ltd [2010] QSC 118 an order was made under r 250 of the Uniform Civil Procedure Rules 1999 (Qld) (“UCPR”) requiring the respondent to continue to hold and maintain straws of semen belonging to the applicant’s deceased husband. The decision includes a useful analysis of the development of the common law regarding property rights in human bodies and body parts.
Resumo:
Heatwaves are associated with significant health risks particularly among vulnerable groups. To minimize these risks, heat warning systems have been implemented. The question therefore is how effective these systems are in saving lives and reducing heat-related harm. We systematically searched and reviewed 15 studies which examined this. Six studies asserted that fewer people died of excessive heat after the implementation of heat warning systems. Demand for ambulance decreased following the implementation of these systems. One study also estimated the costs of running heat warning systems at US$210,000 compared to the US$468 million benefits of saving 117 lives. The remaining eight studies investigated people?s response to heat warning systems and taking appropriate actions against heat harms. Perceived threat of heat dangers emerged as the main factor related to heeding the warnings and taking proper actions. However, barriers, such as costs of running air-conditioners, were of significant concern, particularly to the poor. The weight of the evidence suggests that heat warning systems are effective in reducing mortality and, potentially, morbidity. However, their effectiveness may be mediated by cognitive, emotive and socio-demographic characteristics. More research is urgently required into the cost-effectiveness of heat warning systems? measures and improving the utilization of the services.
Resumo:
Fire safety design is important to eliminate the loss of property and lives during fire events. Gypsum plasterboard is widely used as a fire safety material in the building industry all over the world. It contains gypsum (CaSO4.2H2O) and Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Currently plasterboard manufacturers use additives such as vermiculite to overcome shrinkage of gypsum core and glass fibre to bridge shrinkage cracks and enhance the integrity of board during calcination and after the loss of paper facings in fires. Past research has also attempted to reduce the thermal conductivity of plasterboards using fillers. However, no research has been undertaken to enhance the specific heat of plasterboard and the points of dehydration using chemical additives and fillers. Hence detailed experimental studies of powdered samples of plasterboard mixed with chemical additives and fillers in varying proportions were conducted. These tests showed the enhancement of specific heat of plasterboard. Numerical models were also developed to investigate the thermal performance of enhanced plasterboards under standard fire conditions. The results showed that the use of these enhanced plasterboards in steel wall systems can significantly improve their fire performance. This paper presents the details of this research and the results that can be used to enhance the fire safety of steel wall systems commonly used in buildings.
On the effective hydraulic conductivity and macrodispersivity for density-dependent groundwater flow
Resumo:
In this paper, semi-analytical expressions of the effective hydraulic conductivity ( KE) and macrodispersivity ( αE) for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of KE and αE on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal KE and αE are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical KE and αE are found to be reduced slightly when the density factor ( γ ) is less than 0.01, whereas significant decreases occur when γ exceeds 0.01. Of note, the variation of KE and αE is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.
Resumo:
Effective Wayfinding is the successful interplay of human and environmental factors resulting in a person successfully moving from their current position to a desired location in a timely manner. To date this process has not been modelled to reflect this interplay. This paper proposes a complex modelling system approach of wayfinding by using Bayesian Networks to model this process, and applies the model to airports. The model suggests that human factors have a greater impact on effective wayfinding in airports than environmental factors. The greatest influences on human factors are found to be the level of spatial anxiety experienced by travellers and their cognitive and spatial skills. The model also predicted that the navigation pathway that a traveller must traverse has a larger impact on the effectiveness of an airport’s environment in promoting effective wayfinding than the terminal design.
Resumo:
The book examines the correlation between Intellectual Property Law – notably copyright – on the one hand and social and economic development on the other. The main focus of the initial overview is on historical, legal, economic and cultural aspects. Building on that, the work subsequently investigates how intellectual property systems have to be designed in order to foster social and economic growth in developing countries and puts forward theoretical and practical solutions that should be considered and implemented by policy makers, legal experts and the Word Intellectual Property Organization (WIPO).
Resumo:
Intellectual property is crucial to the promotion of innovation. It provides an incentive to innovate as well as security for investment in innovation. The industries of the 21st century-information technology, biotechnology, pharmaceuticals, communications, education and entertainment – are all knowledge-based. The WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (the TRIPS Agreement), adopted in 1994 at the conclusion of the Uruguay Round of trade negotiations, requires all WTO member countries to provide for the protection and enforcement of intellectual property rights. Having forged a link for the first time between intellectual property rights and the international trading system, the adoption of TRIPS means that any country that aims to participate fully in the global economy needs to understand the role of intellectual property and align its intellectual property laws and practices with the international minimum standards prescribed by TRIPS. However, for developing and least-developed countries, the implementation of intellectual property systems and enforcement mechanisms raises questions and challenges. Does recognition and enforcement of intellectual property serve their development needs and objectives? Does TRIPS encourage or hinder the transfer of technologies to developing and least-developed countries, particularly those that meet urgent needs in areas such as public health, food security, water and energy? What is the effect of TRIPS on developing countries’ access to knowledge and information? Is there scope for flexibility in implementation of TRIPS in pursuit of development strategies?
Resumo:
This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.
Resumo:
The risk of vitamin D insufficiency is increased in persons having limited sunlight exposure and dietary vitamin D. Supplementation compliance might be improved with larger doses taken less often, but this may increase the potential for side effects. The objective of the present study was to determine whether a weekly or weekly/monthly regimen of vitamin D supplementation is as effective as daily supplementation without increasing the risk of side effects. Participants were forty-eight healthy adults who were randomly assigned for 3 months to placebo or one of three supplementation regimens: 50 μg/d (2000 IU/d, analysed dose 70 μg/d), 250 μg/week (10 000 IU/week, analysed dose 331 μg/week) or 1250 μg/week (50 000 IU/week, analysed dose 1544 μg/week) for 4 weeks and then 1250 μg/month for 2 months. Daily and weekly doses were equally effective at increasing serum 25-hydroxyvitamin D, which was significantly greater than baseline in all the supplemented groups after 30 d of treatment. Subjects in the 1250 μg treatment group, who had a BMI >26 kg/m2, had a steady increase in urinary Ca in the first 3 weeks of supplementation, and, overall, the relative risk of hypercalciuria was higher in the 1250 μg group than in the placebo group (P= 0·01). Although vitamin D supplementation remains a controversial issue, these data document that supplementing with ≤ 250 μg/week ( ≤ 10 000 IU/week) can improve or maintain vitamin D status in healthy populations without the risk of hypercalciuria, but 24 h urinary Ca excretion should be evaluated in healthy persons receiving vitamin D3 supplementation in weekly single doses of 1250 μg (50 000 IU).
Resumo:
There exists an important tradition of content analyses of aggression in sexually explicit material. The majority of these analyses use a definition of aggression that excludes consent. This article identifies three problems with this approach. First, it does not distinguish between aggression and some positive acts. Second, it excludes a key element of healthy sexuality. Third, it can lead to heteronormative definitions of healthy sexuality. It would be better to use a definition of aggression such as Baron and Richardson's (1994) in our content analyses, that includes a consideration of consent. A number of difficulties have been identified with attending to consent but this article offers solutions to each of these.
Resumo:
Pt/SnO2 nanowires/SiC based metal-oxidesemiconductor (MOS) devices were fabricated and tested for their gas sensitivity towards hydrogen. Tin oxide (SnO2) nanowires were grown on SiC substrates by the vapour liquid solid growth process. The material properties of the SnO2 nanowires such as its formation and dimensions were analyzed using scanning electron microscopy (SEM). The currentvoltage (I-V) characteristics at different hydrogen concentrations are presented. The effective change in the barrier height for 0.06 and 1% hydrogen were found to be 20.78 and 131.59 meV, respectively. A voltage shift of 310 mV at 530°C for 1% hydrogen was measured.
Resumo:
Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.
Resumo:
Growing community concerns about the ecological, social, cultural and economic impact of housing and urban projects poses new challenges for those who have to deliver them. It is important that these concerns are addressed as part of the community engagement processes on projects. Community engagement is traditionally perceived as the purview of planners and disconnected from the building construction process. This is despite most project approval processes mandating on-going community engagement over the project’s entire lifetime. There is evidence that point to a culture of ambiguity and ambivalence among building professionals about their roles, responsibilities and expectations of community engagement during the construction phase of projects. This has contributed to a culture of distrust between communities and the construction industry. There is a clear need to build capacity among building professionals to empower them as active participants in community engagement processes which can promote better project outcomes and minimise delays and conflicts. This paper describes a process that utilises the Theory of Planned Behaviour as a framework to equip building professionals with the skills they need to engage effectively with local communities during the construction phase of projects.