968 resultados para deep-water corals


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geochemical compositions and Sr and Nd isotopes were measured in two cores collected ~2 and 5 km from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge. Overall, the cores record enrichments in Fe and other metals from hydrothermal fallout, but sequential dissolution of the sediments allows discrimination between a leach phase (easily leachable) and a residue phase (refractory). The oxy-anion and transition metal distribution combined with rare earth element (REE) patterns suggest that (1) the leach fraction is a mixture of biogenic carbonate and hydrothermal Fe-Mn oxy-hydroxide with no significant contribution from detrital material and (2) >99.5% of the REE content of the leach fraction is of seawater origin. In addition, the leach fraction has an average 87Sr/86Sr ratio indistinguishable from modern seawater at 0.70916. Although we lack the epsilon-Nd value of present-day deep water at the Rainbow vent site, we believe that the REE budget of the leach fraction is predominantly of seawater origin. We suggest therefore that the leach fraction provides a record of local seawater epsilon-Nd values. Nd isotope data from these cores span the period of 4-14 ka (14C ages) and yield epsilon-Nd values for North East Atlantic Deep Water (NEADW) that are higher (-9.3 to -11.1) than those observed in the nearby Madeira Abyssal Plain from the same depth (-12.4 ± 0.9). This observation suggests that either the Iceland-Scotland Overflow Water (ISOW) and Lower Deep Water contributions to the formation of NEADW are higher along the Mid-Atlantic Ridge than in the surrounding basins or that the relative proportion of ISOW was higher during this period than is observed today. This study indicates that hydrothermal sediments have the potential to provide a higher-resolution record of deep water epsilon-Nd values, and hence deepwater circulation patterns in the oceans, than is possible from other types of sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geomorphology of the Guinea Basin is described along with sediments from cores collected on the abyssal plain, within the abyssal hill zone, and in the eastern part of the Chain Fracture Zone. Stratigraphic differentiation of deep-sea sediments was based on diatom analysis, geochemical and lithological data. Holocene and Pleistocene were identified by these criteria. The lower boundary of Holocene is was found from a marked decrease in CaCO3 concentration and total diatom count. Mineral and chemical compositions are given for coarse silt fraction of various Late Pleistocene sediments. It is shown that this facial complex is determined by tectonic position of the Guinea Basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intervals of organic C- and carbonate-rich laminated sediments occur in the Sea of Japan with roughly the same frequency as temperature changes observed in Greenland ice cores, providing clear evidence of rapid oceanographic change during the past 36 kyr. Planktonic foraminiferal d18O data suggest that only the laminated sediments deposited during the Last Glacial Maximum (LGM), and perhaps one other interval formed during a period of increased water column stratification. Sedimentary Re and Mo data are consistent with bottom waters that were sulfidic during the LGM and suboxic during other laminated intervals. Results of a numerical model of Corg and Re burial are consistent with a mechanism whereby an increased Corg flux to the seafloor drove oxygen concentrations toward depletion during times of deposition of the suboxic laminated intervals. Such a process could have resulted from increased upwelling driven either by increased deep water formation due to colder and/or more saline surface waters or by stronger northeasterly monsoonal winds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New geochemical proxy data from Bermuda Rise piston cores reveal ocean and climate conditions in the northern Sargasso Sea during marine isotope stage 3. Using ?18O on the planktonic foraminifer Globigerinoides ruber, we can correlate explicitly with every stadial/interstadial change in Greenland ice between ~32 and 58 ka. These data suggest repetitive changes of ~4°C in the annual average sea surface temperature (SST), with maximum cooling comparable to or greater than SST during glacial maximum conditions. The extent of SST depression is about the same for typical stadial events and for Heinrich events 4 and 5, which we have identified on the Bermuda Rise by traces of ice rafting. Benthic foraminiferal d13C decreases during every stadial event, consistent with reduced production of the deepest component of North Atlantic Deep Water and shoaling of its interface with Antarctic Bottom Water. This interpretation is supported by benthic Cd/Ca data from the climate cycle associated with interstadial 8.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Håkon Mosby Mud Volcano is a natural laboratory to study geological, geochemical, and ecological processes related to deep-water mud volcanism. High resolution bathymetry of the Håkon Mosby Mud Volcano was recorded during RV Polarstern expedition ARK-XIX/3 utilizing the multibeam system Hydrosweep DS-2. Dense spacing of the survey lines and slow ship speed (5 knots) provided necessary point density to generate a regular 10 m grid. Generalization was applied to preserve and represent morphological structures appropriately. Contour lines were derived showing detailed topography at the centre of the Håkon Mosby Mud Volcano and generalized contours in the vicinity. We provide a brief introduction to the Håkon Mosby Mud Volcano area and describe in detail data recording and processing methods, as well as the morphology of the area. Accuracy assessment was made to evaluate the reliability of a 10 m resolution terrain model. Multibeam sidescan data were recorded along with depth measurements and show reflectivity variations from light grey values at the centre of the Håkon Mosby Mud Volcano to dark grey values (less reflective) at the surrounding moat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic complexation of dissolved iron (dFe) was investigated in the Atlantic sector of the Southern Ocean in order to understand the distribution of Fe over the whole water column. The total concentration of dissolved organic ligands ([Lt]) measured by voltammetry ranged between 0.54 and 1.84 nEq of M Fe whereas the conditional binding strength (K') ranged between 10**21.4 and 10**22.8. For the first time, trends in Fe-organic complexation were observed in an ocean basin by examining the ratio ([Lt]/[dFe]), defined as the organic ligand concentration divided by the dissolved Fe concentration. The [Lt]/[dFe] ratio indicates the saturation state of the natural ligands with Fe; a ratio near 1 means saturation of the ligands leading to precipitation of Fe. Reversely, high ratios mean Fe depletion and show a high potential for Fe solubilisation. In surface waters where phytoplankton is present low dissolved Fe and high variable ligand concentrations were found. Here the [Lt]/[dFe] ratio was on average 4.4. It was especially high (5.6-26.7) in the HNLC (High Nutrient, Low Chlorophyll) regions, where Fe was depleted. The [Lt]/[dFe] ratio decreased with depth due to increasing dissolved Fe concentrations and became constant below 450 m, indicating a steady state between ligand and Fe. Relatively low [Lt]/[dFe] ratios (between 1.1 and 2.7) existed in deep water north of the Southern Boundary, facilitating Fe precipitation. The [Lt]/[dFe] ratio increased southwards from the Southern Boundary on the Zero Meridian and from east to west in the Weddell Gyre due to changes both in ligand characteristics and in dissolved iron concentration. High [Lt]/[dFe] ratio expresses Fe depletion versus ligand production in the surface. The decrease with depth reflects the increase of [dFe] which favours scavenging and (co-) precipitation, whereas a horizontal increase in the deep waters results from an increasing distance from Fe sources. This increase in the [Lt]/[dFe] ratio at depth shows the very resistant nature of the dissolved organic ligands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was performed from August 11 to September 3, 1998 in the Pechora Sea, which covered the shallow-water southeastern Barents Sea. Chlorophyll a concentration in the surface layer (C_chls) ranged from 0.08 to 1.15 mg/m**3, while primary production in the water column (C_phs) Varied from 17 to 170 mg C/m**2/day, aver. 75 mg C/m**2/day. Transition from central deep-water (60-190 m) parts of the sea to coastal shallow-water (15-30 m) parts was accompanied by increase of average C_chls values 2.4 times (from 0.21 to 0.51 mg/m**3) and decrease in average C_phs 1.6 times (from 95 to 58 mg C/m**2/day); the latter, in turn, resulted from decrease in thickness of the photosynthetic layer (H_ph) from 55 to 12 m and its relative transparency (H) from 17 to 4 m. This sharp change in H value and absence of a positive feedback between C_chls and C_phs were most probably related to rapid increase in the role of yellow substance and suspended matter in absorption of solar radiation in coastal waters. In sea areas with depths greater than 30 m a deep chlorophyll maximum was observed; at most of stations it located in the 20-35 m deep layer during illumination in photosynthetic active radiation range comprising 0.8-1.5% of its surface value. Parameters of photosynthetic light curves in these regions indicate participation of shade-adapted flora in formation of the deep chlorophyll maximum. In coastal waters characterized by a relatively uniform chlorophyll distribution over the water column no light adaptation of phytoplankton to efficient utilization of low irradiation for photosynthesis was encountered. Thus, a conclusion was made that combination of extremely low values of C_phs and H_ph makes the pelagic ecosystem of the Pechora Sea coastal regions very sensitive to anthropogenic impacts that may increase water turbidity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While large-scale transverse drainages (TDs) such as those of the Susquehanna River above Harrisburg, PA, have been recognized since the 19th century, there have been no systematic surveys done of TDs since that of Ver Steeg's in 1930. Here, the results are presented of a topographic and statistical analysis of TDs in the Susquehanna River basin using Google Earth and associated overlays. 653 TDs were identified in the study area, 95% of which contain streams with discharges of less than 10 m3/s. TD depths ranged from a 23 m deep water gap near Blain, PA, to the 539 m deep gorge of the Juniata River through Jacks Mountain. Although TD depth tended to increase with stream size, many small streams were located in deep gaps, and eight streams with discharges of 10 m3/s or less were found in gorges whose depths matched or exceeded the deepest TD of the Susquehanna, the largest stream in the basin. Streams of less than 10 m3/s made up the majority of TDs regardless of the rock type capping the breached structure. Overall, TDs through sandstone-capped ridges were deeper than those topped by shales, and TDs in both sandstones and shales displayed a lognormal distribution of depths, which may be indicative of a preferred value. Stream flow direction was primarily perpendicular to local structural strike, with 47% of streams flowing NW and 53% flowing SE. 19% of the TDs were found to be in alignment with at least one other TD, with aligned segment lengths ranging from .5 to 14.8 km. The majority of TDs were in rocks of Paleozoic age. The techniques described here allow the frequency and distribution of TDs to be quantified so that they can be integrated into models of basin evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times (Broecker et al., 1990, doi:10.1029/PA005i004p00469) and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch) (Bond et al., 2001, doi:10.1126/science.1065680; Alley et al., 1997, doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2; Keigwin and Boyle, 2000, doi:10.1073/pnas.97.4.1343). Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial-millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic geochemical and sedimentological investigations have been performed on sediments from ODP Sites 798 and 799 in order to reconstruct the depositional environment in the Japan Sea through late Cenozoic times. The Miocene to Quaternary sediments from Site 798 (Oki Ridge) and Site 799 (Kita-Yamato Trough) are characterized by high organic carbon contents of up to 6%. The organic matter is mainly a mixture of marine and terrigenous material. The dominant factors controlling marine organic carbon enrichment in the sediments of Hole 798A are probably an increased surface-water productivity and/or an increased preservation rate of organic carbon under anoxic deep-water conditions. In lower Pliocene sediments at Site 798 and Miocene to Quaternary sediments at Site 799, rapid burial of organic matter in turbidites may have been important, too. Remarkable cycles of dark, laminated sediments distinctly enriched in (marine) organic carbon by up to 5% and light, bioturbated to homogeneous sediments with reduced organic carbon contents indicate dramatic short-term paleoenvironmental variation.