979 resultados para continuous model theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the Gibbs free energy, the equation of state and the chemical potentials of polydisperse multicomponent polymer mixtures are derived. For general binary mixtures of polydisperse polymers, we also give the Gibbs free energy, the equation of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a binary mixture of polydisperse polymers with strong interactions, the free energy, the equation of state, the chemical potentials and the spinodal are formulated on the basis of the lattice fluid model. Further, the spinodal curves for the system wi

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tube diameter in the reptation model is the distance between a given chain segment and its nearest segment in adjacent chains. This dimension is thus related to the cross-sectional area of polymer chains and the nearest approach among chains, without effects of thermal fluctuation and steric repulsion. Prior calculated tube diameters are much larger, about 5 times, than the actual chain cross-sectional areas. This is ascribed to the local freedom required for mutual rearrangement among neighboring chain segments. This tube diameter concept seems to us to infer a relationship to the corresponding entanglement spacing. Indeed, we report here that the critical molecular weight, M(c), for the onset of entanglements is found to be M(c) = 28 A/([R2]0/M), where A is the chain cross-sectional area and [R2]0 the mean-square end-to-end distance of a freely jointed chain of molecular weight M. The new, computed relationship between the critical number of backbone atoms for entanglement and the chain cross-sectional area of polymers, N(c) = A0,44, is concordant with the cross-sectional area of polymer chains being the parameter controlling the critical entanglement number of backbone atoms of flexible polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the effective medium approximation theory of composites, the empirical model proposed by Pandey and Kakar is remedied to investigate the microwave emissivity of sea surface under wave breaking driven by strong wind. In the improved model, the effects of seawater bubbles, droplets and difference in temperature of air and sea interface (DTAS) on the emissivity of sea surface covered by whitecaps are discussed. The model results indicate that the effective emissivity of sea surface increases with DTAS increasing, and the impacts of bubble structures and thickness of whitecaps layer on the emissivity are included in the model by introducing the effective dielectric constant of whitecaps layer. Moreover, a good agreement is obtained by comparing the model results with the Rose's experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mechanistic model is developed to present the photosynthetic response of phytoplankton to irradiance at the physiological level. The model is operated on photosynthetic units (PSU), and each PSU is assumed to have two states: reactive and activated. Light absorption that drives a reactive PSU into the activated state results from the effective absorption of the PSU. Transitions between the two states are asymmetrical in rate. A PSU in the reactive state becomes activated much faster than it recovers from the activated state to the reactive one. The turnover time for an activated PSU to transit into the reactive one is defined by the turnover time of the electron transport chain. The present model yields a photosynthesis-irradiance curve (PE-curve) in a hyperbola, which is described by three physiological parameters: effective cross-section (sigma (PSII)), turnover time of electron transport chain (tau) and number of PSUs (N). The PE-curve has an initial slope of sigma (PSII) x N, a half-saturated irradiance of 1/(sigma (PSII)), and a maximal photosynthetic rate of Nlc at the saturated irradiance. The PE-curve from the present model is comparable to the empirical function based on the target theory described by the Poisson distribution. (C) 2001 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To extend the cross-hole seismic 2D data to outside 3D seismic data, reconstructing the low frequency data to high frequency data is necessary. Blind deconvolution method is a key technology. In this paper, an implementation of Blind deconvolution is introduced. And optimized precondition conjugate gradient method is used to improve the stability of the algorithm and reduce the computation. Then high-frequency retrieved Seismic data and the cross-hole seismic data is combined for constraint inversion. Real data processing proved the method is effective. To solve the problem that the seismic data resolution can’t meet the request of reservoir prediction in the river face thin-layers in Chinese eastern oil fields, a high frequency data reconstruction method is proposed. The extrema of the seismic data are used to get the modulation function which operated with the original seismic data to get the high frequency part of the reconstruction data to rebuild the wide band data. This method greatly saves the computation, and easy to adjust the parameters. In the output profile, the original features of the seismic events are kept, the common feint that breaking the events and adding new zeros to produce alias is avoided. And the interbeded details are enhanced compared to the original profiles. The effective band of seismic data is expended and the method is approved by the processing of the field data. Aim to the problem in the exploration and development of Chinese eastern oil field that the high frequency log data and the relative low frequency seismic data can’t be merged, a workflow of log data extrapolation constrained by time-phase model based on local wave decomposition is raised. The seismic instantaneous phase is resolved by local wave decomposition to build time-phase model, the layers beside the well is matched to build the relation of log and seismic data, multiple log info is extrapolated constrained by seismic equiphase map, high precision attributes inverse sections are produced. In the course of resolve the instantaneous phase, a new method of local wave decomposition --Hilbert transform mean mode decomposition(HMMD) is raised to improve the computation speed and noise immunity. The method is applied in the high resolution reservoir prediction in Mao2 survey of Daqing oil field, Multiple attributes profiles of wave impedance, gamma-ray, electrical resistivity, sand membership degree are produced, of which the resolution is high and the horizontal continuous is good. It’s proved to be a effective method for reservoir prediction and estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Debris Landslide is one of the types of landslides with the widest distribution, largest quantity, and the closest relationship with engineering construction. It is also one of the most important types of landslides that can cause disaster. This kind of landslide often occurs in the loose slopes which are made up of loose congeries formed by earth filling, residual soil, slope wash, dilapidation, landslide or full weathered material of hard rock. Rainfall is always the chief inducing factor of debris Landslide. Therefore, to research stability of debris Landslide during rainfall not only has important theoretical significance for understanding developing law and deformation and failure mechanism of debris landslide, but also has important practical significance for investigating, appraising, forecasting, preventing and controlling debris landslides. This thesis systematically summarized the relationships between rainfall and landslide, the method to survey water table in the landslides, the deformation and failure mechanism of debris landslide, and the progress in the stability analysis of landslides based on the analyses of data collected widely at home and abroad. The problems in the study of the stability of debris landslide during rainfall was reviewed and discussed. Due to the complicated geological conditions and the random rainfall conditions, the research on the landslides' stability must be based on engineering geological qualitative analysis. Through the collection of the data about the Panxi region and the Three Gorges Reservoir region, the author systematically summarized the engineering geological conditions, hydro-geological condition, distribution characteristics of stress field in the slope, physical and mechanical properties and hydro-mechanical properties of debris. In the viewpoint of dynamics of soil water and hydromechanics, physical process of rainfall to supply groundwater of debris landslides can be divided into two phases, i.e. non-saturated steady infiltrating phase and saturated unsteady supplying phase. The former can be described by mathematical model of surface water infiltration while the latter can be described by equivalent continuous medium model of groundwater seepage. With regard to specific hydrological geology system, we can obtain the dynamic variation law of water content, water table, landslide stability of rock and soil mass, along with quantity and duration of rainfall after the boundary condition on hydrological geology has been ascertained. This is a new way to study the response law of groundwater in the landslides during rainfall. After wet face of rock and soil mass connects with ground water table, the raising of water table will occur due to the supply of rainfall. Then interaction between ground water and rock and soil mass will occur, such as the action of physics, water, chemistry and mechanics, which caused the decrease of shearing strength of sliding zone. According to the action of groundwater on rock and soil mass, a concise mechanical model of debris landslide’s deformation was established during rainfall. The static equilibrium condition of landslide mass system was achieved according to the concise mechanical model, and then the typical deformation and failure process and failure mode of debris landslide during rainfall were discussed. In this thesis, the former limiting equilibrium slice method was modified and improved based on shearing strength theory of , a stability analysis program of debris landslide was established and developed taking account of the saturated-unsaturated seepage, by introducing the shearing strength theory of unsaturated soil mass made by (1978). The program has reasonable data storage and simple interface and is easy to operate, and can be perfectly used to carry out sensitivity analysis of influencing factors of landslides' stability, integrated with the program of Office Excel. The design of drainage engineering are always bases on empirical methods and is short of effective quantitative analysis and appraise, therefore, the conception of critical water table of debris landslide was put forward. For debris landslides with different kinds of slide face in the engineering practice, a program to search the critical water table of debris landslide was developed based on native groundwater table. And groundwater table in the slope should be declined below the critical water table in the drainage works, so the program can be directly used to guide drainage works in the debris landslide. Taking the slope deformation body in the back of former factory building of Muli Shawan hydroelectric power station as an example, a systematic and detailed research on debris landslides' stability during rainfall was researched systematically, the relationship among quantity of rainfall, water table and stability of slope was established, the debris landslides' stability in process of rainfall from dynamic viewpoint was analyzed and researched.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical and Geophysical anomaly play an important role in mineral exploration,their spatial structure character include singularity and self-similar。The singularity of an anomaly reflects the enrichment characters of the geochemical element ,The anomaly separation by multifractal model is useful in mineral anomaly assessment。In recent years, The continuous multifractal mode of the geochemical fields was studied ,it can be separated into the simple continuous multifractal mode and the high concentration multifractal mode, and the C-A、C-D、 S-A、MSDV、W-A method to decompose the anomaly were presented。Those are succeeded in interpretation of Geochemical and Geophysical anomaly。 This study makes a summarization to these method, we present a multifractal method based on wavelet transform to analyze the multifractal fields 。The singularity and spectrum are calculated through tracing the wavelet maximum modulus in different measure,and then the fields can be decomposed by the characters of the singularity。 It is demonstrated to be useful in interpretation of Au anomaly in Gekou-Shicheng region Rushang Shandong Province 。 Based on the multifractal theory , Using the concentration—area(C—A)method ,We study two geochemical fields in Chifeng area , Inner Mongolia。The results show that the geochemical fields have three different multifractal modes。Based on these ,we discuss the enrichment mode of the geochemical elements and their distributions in space and get the anomaly lower limit ,then the geochemical backgrounds、regional anomalies and local anomalies are distinguished

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mathematical modeling of multiphase fluid flow is an important aspect of basin simulation, and also is a topic of geological frontier. Based on coupling relation of temperature, pressure and fluid flow, this dissertation discusses the modeling which conform to geological regularities of fluid migration. The modeling that is multi-field and multiphase includes heat transport equation, pressure evolvement equation, solution transport equation and fluid transport equation. The finite element method is effective numerical calculation methods. Author applies it to solve modeling and implements the finite element program, and the modeling is applied to Ying-Qiong Basin. The channels of fluid vertical migration are fault, fracture and other high penetrability area. In this thesis, parallel fracture model and columnar channel model have been discussed, and a characteristic time content and a characteristic space content been obtained to illustrate the influences of stratigraphic and hydrodynamic factors on the process. The elliptoid fracture model is established and its approximately solution in theory is gotten. Three kinds of modeling are applied to analyze the transient variation process of fluid pressure in the connected permeable formations. The elliptoid fracture model is the most similar geology model comparing with the other fracture models so the research on this fracture model can enhance the understanding to fluid pressure. In the non-hydrodynamic condition, because of the difference between water density and nature gas density, nature gas can migrate upon by float force. A one-dimension mathematical model of nature gas migration by float force is established and also applied to analyze the change in the saturation of gas. In the process of gas migration its saturation is non-continuous. Fluid flow is an important factor which influences the distribution of the temperature-field, the change of temperature can influence fluid property (including density, viscidity, and solubility),a nd the temperature field has coupling relations to the fluid pressure field. In this dissertation one-dimension and two-dimension thermal convection modeling is developed and also applied to analyze convective and conductive heat transfer. Author has established one-dimension and two-dimension mathematical modeling in which fluid is a mixture of water and nature gas based on the coupling relation between temperature and pressure, discussed mixture fluid convection heat transfer in different gas saturation, and analyzed overpressure form mechanism. Based on geothermal abnormity and pore pressure distribution in Dongfong 1-1, Yinggehai Basin, South China Sea, one-dimension mathematical modeling of coupling temperature and pressure is established. The modeling simulates the process that fluid migrates from deep to shallow and overpressure forms in shallow. When overpressure is so large that fractures appear and overpressure is released. As deep fluid flow to shallow, the high geothermal then forms in shallow. Based on the geological characteristics in Ya13-1, two-dimension mathematical modeling of coupling temperature and pressure is established. Fluid vertically flows in fault and then laterally migrates in reservoir. The modeling simulates the geothermal abnormity and pore pressure distribution in reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes landsliding process by nonlinear theories, especially the influence mechanism of external factors (such as rainfall and groundwater) on slope evolution. The author investigates landslide as a consequence of the catastrophic slide of initially stationary or creeping slope triggered by a small perturbation. A fully catastrophe analysis is done for all possible scenarios when a continuous change is imposed to the control parameters. As the slip surface continues and erosion due to rainfall occurs, control parameters of the slip surface may evolve such that a previously stable slope may become unstable (e.g. catastrophe occurs), when a small perturbation is imposed. Thus the present analysis offers a plausible explanation to why slope failure occurs at a particular rainfall, which is not the largest in the history of the slope. It is found, by analysis on the nonlinear dynamical model of the evolution process of slope built, that the relationship between the action of external environment factors and the response of the slope system is complicatedly nonlinear. When the nonlinear action of slope itself is equivalent to the acting ability of external environment, the chaotic phenomenon appears in the evolution process of slope, and its route leading to chaos is realized with bifurcation of period-doublings. On the basis of displacement time series of the slope, a nonlinear dynamic model is set up by improved Backus generalized linear inversion theory in this paper. Due to the equivalence between autonomous gradient system and catastrophe model, a standard cusp catastrophe model can be obtained through variable substitution. The method is applied to displacement data of Huangci landslide and Wolongsi landslide, to show how slopes evolve before landsliding. There is convincing statistical evidence to believe that the nonlinear dynamic model can make satisfied prediction results. Most important of all, we find that there is a sudden fall of D, which indicates the occurrence of catastrophe (when D=0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic Geology Information System(SGIS) is a part of the theory of Engineering Geomechanics-mate-Synthetics(EGMS), is also a development of its technical methodology. SGIS includes ways of geology engineering investigation, design, and construction. Although SGIS has an integrate theory frame, and some parts of it have gained great progress, the completion of SGIS is a continuous and accumulative process. This paper analyses the ways and principle of building knowledge database and model database, summarizes the experts' experience on exploration methods selection and the characters of exploration models, combining with the application of Decision Support System(DSS) in Decision support of Synthetic Exploration Methods for Railway engineering Geology. By the analysis of hierarchy structure of the model database, the effects of geology engineering factors on the selection of exploration methods are expressed. By the usage of fuzzy patterns recognize, hierarchy structure analysis, fuzzy collection closement analysis etc, the software of DSS for engineering design and construction are developed. At same time, by the development of Monitoring Data Analysis System and experiment data management system of Hydro-power project, this paper discussed the data management of science experiment of Hydro-power project by the usage of synthetic database and the usage of Geography Information System(GIS) and DSS technics. The technic of visual operation of data process and project monitoring system are presented. The intelligence algorithm of self-adoption is carried out to improve the data process and analysis of monitoring. Items of the project theoretical analysis and data process are designed in detail. All the theory and technical methods presented in this paper are one part of SGIS, in which the application of DSS and GIS, is an important step of the progress and completion of SGIS.