998 resultados para cluster validation
Resumo:
one of the key sectors, identified by the Department of Industries Government of Kerala, for the cluster development initiative is Handloom, which gives employment to over over 50,000 people directly. Despite its age old tradition and fame, the performance of the sector vis-à-vis power looms is not very rosy owing to (i) competition from cheap power loom cloth from other states (ii) scarcity of quality yarn (iii) price escalation of yarn, dyes, chemicals and other raw materials (iv) the shrinking market for handlooms in Kerala (v) non-demand based production and inadequacy of new designs and (vi) inefficiencies in the system, particularly in the co-operative sector. Cluster based approach is adopted in the handloom sector with the objective of providing necessary support mechanism to come out of the crisis that the sector faces now. While four cluster schemes are being implemented in Kerala, it is under IHDS-CDP that the State got a sizeable number of clusters benefiting a large number of societies and weavers- 24 handloom clusters, bringing 152 handloom co-operative societies and over 19,800 handloom workers under the Programme. This research attempts to revisit the underlying rationale and context of the new direction and would attempt to broadly analyze the growth trends under the influence of cluster model adopted by the State IHDS-CDP for the revival of handloom sector through a detailed study of the handloom co-operative societies in Kerala. If handloom sector in Kerala can be revived using cluster based approach, it can be easily concluded that cluster is capable of taking the MSME in Kerala to a ‘high growth path.’ The study is aimed at understanding how best clusters emerge as appropriate industrial organization suitable for the current global structure of manufacture
Resumo:
Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation
Resumo:
Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92MeV Si ions for various fluences of 1 1011, 1 1012 and 1 1013 ions/cm2. FTIR and UV–vis–NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CRC terminals. This results in extended conjugated structure causing reduction in optical band gap
Resumo:
Fine magnetic particles (sizeffi100A ˚ ) belonging to the series ZnxFe1 xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically
Resumo:
Globalization and liberalization, with the entry of many prominent foreign manufacturers, changed the automobile scenario in India, since early 1990‟s. Manufacturers such as Ford, General Motors, Honda, Toyota, Suzuki, Hyundai, Renault, Mitsubishi, Benz, BMW, Volkswagen and Nissan set up their manufacturing units in India in joint venture with their Indian counterpart companies, by making use of the Foreign Direct Investment policy of the Government of India, These manufacturers started capturing the hearts of Indian car customers with their choice of technological and innovative product features, with quality and reliability. With the multiplicity of choices available to the Indian passenger car buyers, it drastically changed the way the car purchase scenario in India and particularly in the State of Kerala. This transformed the automobile scene from a sellers‟ market to buyers‟ market. Car customers started developing their own personal preferences and purchasing patterns, which were hitherto unknown in the Indian automobile segment. The main purpose of this paper is to come up with the identification of possible parameters and a framework development, that influence the consumer purchase behaviour patterns of passenger car owners in the State of Kerala, so that further research could be done, based on the framework and the identified parameters
Resumo:
Cochin University Of Science And Technology
Resumo:
We present a theory which permits for the first time a detailed analysis of the dependence of the absorption spectrum on atomic structure and cluster size. Thus, we determine the development of the collective excitations in small clusters and show that their broadening depends sensitively on the tomic structure, in particular at the surface. Results for Hg_n^+ clusters show that the plasmon energy is close to its jellium value in the case of spherical-like structures, but is in general between w_p/ \wurzel{3} and w_p/ \wurzel{2} for compact clusters. A particular success of our theory is the identification of the excitations contributing to the absorption peaks.
Resumo:
We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na_n ^+ have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na_2 and, observed for the first time, neutral trimer Na_3 photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.
Resumo:
The real-time dynamics of molecular (Na_2 . Na_3) and cluster Na_n (n=4-2l) multiphoton ionization and -fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Wave packet motion in the dimer Na_2 reveals two independent multiphoton ionization processes while the higher dimensional motion in the trimer Na_3 reflects the chaotic vibrational motion in this floppy system. The first studies of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na^*_n) ) with femtosecond laser pulses give a striking illustration of the transition from "molecule-like" excitations to "surfaceplasma"-like resonances for increasing cluster sizes. Time-resolved fragmentation of cluster ions Na_n^* indicate that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Usually, psychometricians apply classical factorial analysis to evaluate construct validity of order rank scales. Nevertheless, these scales have particular characteristics that must be taken into account: total scores and rank are highly relevant
Resumo:
Precision of released figures is not only an important quality feature of official statistics, it is also essential for a good understanding of the data. In this paper we show a case study of how precision could be conveyed if the multivariate nature of data has to be taken into account. In the official release of the Swiss earnings structure survey, the total salary is broken down into several wage components. We follow Aitchison's approach for the analysis of compositional data, which is based on logratios of components. We first present diferent multivariate analyses of the compositional data whereby the wage components are broken down by economic activity classes. Then we propose a number of ways to assess precision
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n