950 resultados para characterization and renewable source
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Graphene, first isolated in 2004 and the subject of the 2010 Nobel Prize in physics, has generated a tremendous amount of research interest in recent years due to its incredible mechanical and electrical properties. However, difficulties in large-scale production and low as-prepared surface area have hindered commercial applications. In this dissertation, a new material is described incorporating the superior electrical properties of graphene edge planes into the high surface area framework of carbon nanotube forests using a scalable and reproducible technology.
The objectives of this research were to investigate the growth parameters and mechanisms of a graphene-carbon nanotube hybrid nanomaterial termed “graphenated carbon nanotubes” (g-CNTs), examine the applicability of g-CNT materials for applications in electrochemical capacitors (supercapacitors) and cold-cathode field emission sources, and determine materials characteristics responsible for the superior performance of g-CNTs in these applications. The growth kinetics of multi-walled carbon nanotubes (MWNTs), grown by plasma-enhanced chemical vapor deposition (PECVD), was studied in order to understand the fundamental mechanisms governing the PECVD reaction process. Activation energies and diffusivities were determined for key reaction steps and a growth model was developed in response to these findings. Differences in the reaction kinetics between CNTs grown on single-crystal silicon and polysilicon were studied to aid in the incorporation of CNTs into microelectromechanical systems (MEMS) devices. To understand processing-property relationships for g-CNT materials, a Design of Experiments (DOE) analysis was performed for the purpose of determining the importance of various input parameters on the growth of g-CNTs, finding that varying temperature alone allows the resultant material to transition from CNTs to g-CNTs and finally carbon nanosheets (CNSs): vertically oriented sheets of few-layered graphene. In addition, a phenomenological model was developed for g-CNTs. By studying variations of graphene-CNT hybrid nanomaterials by Raman spectroscopy, a linear trend was discovered between their mean crystallite size and electrochemical capacitance. Finally, a new method for the calculation of nanomaterial surface area, more accurate than the standard BET technique, was created based on atomic layer deposition (ALD) of titanium oxide (TiO2).
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.
Resumo:
Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.
Synthesis characterization and sintering of cobalt-doped lanthanum chromite powders for use in SOFCs
Resumo:
The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.
Resumo:
Otto-von Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Resumo:
SCOPUS: ed.j
Resumo:
The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with a copper(II) salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L)(NO3)(H2O)] (1), [Cu(H2L)Cl]center dot 2MeOH (2) and the binuclear complex [{Cu(H2L)}(2)(mu-SO4)]center dot 2MeOH (3), respectively, with H2L- in the keto form. Compounds 1-3 were characterized by elemental analysis, Infrared (IR) spectroscopy, Electrospray Ionisation-Mass Spectrometry (ESI-MS) and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane) up to 25% and a turnover number (TON) of 250 (TOF of 42 h(-1)) after 6 h, were achieved.
Resumo:
Although the transition metal chemistry of many dialkylamido ligands has been well studied, the chemistry of the bulky di(tert-butyl)amido ligand has been largely overlooked. The di(tert-butyl)amido ligand is well suited for synthesizing transition metal compounds with low coordination numbers; such compounds may exhibit interesting structural, physical, and chemical properties. Di(tert-butyl)amido complexes of transition metals are expected to exhibit high volatilities and low decomposition temperatures, thus making them well suited for the chemical vapor deposition of metals and metal nitrides. Treatment of MnBr₂(THF)₂, FeI₂, CoBr₂(DME), or NiBr₂(DME) with two equivalents of LiN(t-Bu)2 in benzene affords the two-coordinate complex M[N(t-Bu)₂]₂, where M is Mn, Fe, Co, or Ni. Crystallographic studies show that the M-N distances decrease across the series: 1.9365 (Mn), 1.8790 (Fe), 1.845 (Co), 1.798 Å (Ni). The N-M- N angles are very close to linear for Mn and Fe (179.30 and 179.45°, respectively), but bent for Co and Ni (159.2 and 160.90°, respectively). As expected, the d⁵ Mn complex has a magnetic moment of 5.53 μΒ that is very close to the spin only value. The EPR spectrum is nearly axial with a low E/D ratio of 0.014. The d⁶ Fe compound has a room temperature magnetic moment of 5.55 μΒ indicative of a large orbital angular momentum contribution. It does not exhibit a Jahn-Teller distortion despite the expected doubly degenerate ground state. Applied field Mössbauer spectroscopy shows that the effective internal hyperfine field is unusually large, Hint = 105 T. The magnetic moments of Co[N(t-Bu)₂]₂ and Ni[N(t-Bu)₂]₂ are 5.24 and 3.02 μΒ respectively. Both are EPR silent at 4.2 K. Treatment of TiCl₄ with three equivalents of LiN(t-Bu)2 in pentane affords the briding imido compound Ti₂[μ-N(t-Bu)]₂Cl₂[N(t-Bu)₂]₂ via a dealkylation reaction. Rotation around the bis(tert-butyl)amido groups is hindered, with activation parameters of ΔH‡ = 12.8 ± 0.6 kcal mol-1 and ΔS‡ = -8 ± 2 cal K-1 ·mol-1, as evidenced by variable temperature 1H NMR spectroscopy. Treatment of TiCl₄ with two equivalents of HN(t-Bu)₂ affords Ti₂Cl₆[N(t-Bu)₂]₂. This complex shows a close-contact of 2.634(3) Å between Ti and the carbon atom of one of the CH₃ substituents on the tert-butyl groups. Theoretical considerations and detailed structural comparisons suggest this interaction is not agostic in nature, but rather is a consequence of interligand repulsions. Treatment of NiI₂(PPh3)₂ and PdCl₂(PPh₃)₂ with LiN(t-Bu)₂in benzene affords Ni[N(t-Bu)₂](PPh₃)I and Pd₃(μ₂-NBut₂)2(μ₂-PPh₂)Ph(PPh₃) respectively. The compound Ni[N(t-Bu)₂](PPh₃)I has distorted T-shape in geometry, whereas Pd₃(μ₂-NBut₂)₂(μ₂-PPh₂)Ph(PPh₃) contains a triangular palladium core. Manganese nitride films were grown from Mn[N(t-Bu)₂]₂ in the presence of anhydrous ammonia. The growth rate was several nanometers per minute even at the remarkably low temperature of 80⁰C. As grown, the films are carbon- and oxygen-free, and have a columnar morphology. The spacings between the columns become smaller and the films become smoother as the growth temperature is increased. The composition of the films is consistent with a stoichiometry of Mn₅N₂.