937 resultados para Syngonanthus bisulcatus extract
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An immunoscreening approach was used to isolate a strongly positive cDNA clone from an Entamoeba histolytica HK-9 cDNA expression library in the phage vector lambda ZAP-II. The 1.85-kb cDNA insert was found to be truncated and encoded the cysteine-rich, immunodominant domain of the antigenic 170-kDa subunit of the amebal galactose N-acetylgalactosamine binding lectin. This domain was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Inclusion bodies of the recombinant protein were solubilized with Sarkosyl, and the protein was enriched from the crude bacterial extract by thiol-affinity chromatography. The recombinant protein was used to develop a rapid, sensitive, and specific avidin-biotin microtiter enzyme-linked immunosorbent assay (ELISA) for invasive amebiasis. Sera from 38 individuals suffering from invasive amebiasis, 12 individuals with noninvasive amebiasis, 44 individuals with other infections, and 27 healthy subjects were screened by the recombinant antigen-based ELISA. The sensitivity and specificity of the assay were 90.4 and 94.3%, respectively, which correlated well with those of an ELISA developed with crude amebal antigen (r = 0.94; P < 0.0001), as well as with those of a commercially available serodiagnostic ELISA (r = 0.92; P < 0.0001). Thus, the bacterially expressed recombinant lectin can replace the crude amebal extract as an antigen in the serodiagnosis of invasive amebiasis by using avidin-biotin microtiter ELISA.
Resumo:
Oral cancer ranks among the 10 most common cancers worldwide. Since it is commonly diagnosed at locally advanced stage, curing the cancer demands extensive tissue resection. The emergent defect is reconstructed generally with a free flap transfer. Repair of the upper aerodigestive track with maintenance of its multiform activities is challenging. The aim of the study was to extract comprehensive treatment outcomes for patients having undergone microvascular free flap transfer because of large oral cavity or pharyngeal cancer. Ninety-four patients were analyzed for postoperative survival and complications. Forty-four patients were followed-up and analyzed for functional outcome, which was determined in terms of quality of life, speech, swallowing, and intraoral sensation. Quality of life was assessed using the University of Washington Head and Neck Questionnaire. Speech was analyzed for aerodynamic parameters and for nasal acoustic energy, as well as perceptually for articulatory proficiency, voice quality, and intelligibility. Videofluorography was performed to determine the swallowing ability. Intraoral sensation was measured by moving 2-point discrimination. The 3-year overall survival was over 40%. The 1-year disease-free survival was 43%. Postoperative complications arose in over half of the patients. Flap success rate was high. Perioperative mortality varied between 2% and 11%. Unemployment and heavy drinking were the strongest predictors of survival. Sociodemographic factors were found to associate with quality of life. The global quality of life score deteriorated and did not return to the preoperative level. Significant reduction was detectable in the domains measuring chewing and speech, and in appearance and shoulder function. The basic elements necessary for normal speech were maintained. Speech intelligibility reduced and was related to the misarticulations of the /r/ and /s/ phonemes. Deviant /r/ and /s/ persisted in most patients. Hoarseness and hypernasality occurred infrequently. One year postoperatively, 98% of the patients had achieved oral nutrition and half of them were on a regular masticated diet. Overt and silent aspiration was encountered throughout the follow-up. At 12-month swallow test, 44% of the patients aspirated, 70% of whom silently. Of these patients, 15% presented with pulmonary changes referring to aspiration. Intraoral sensation weakened but was unrelated to oral functions. The results provide new data for oral reconstructions and highlight the importance of the functional outcome of the treatment for an oral cancer patient. The mouth and the pharynx encompass a unit of utmost functional complexity. Surgery should continue to make progress in this area, and methods that lead to good function should be developed. Operational outcome should always be evaluated in terms of function.
Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations
Resumo:
One of the most important modes of summer season precipitation variability over the Indian region, the diurnal cycle, is studied using the Tropical Rainfall Measuring Mission 3-hourly, 0.25 degrees x 0.25 degrees 3B42 rainfall product for nine years (1999-2007). Most previous studies have provided an analysis of a single year or a few years of satellite-or station-based rainfall data. Our study aims to systematically analyze the statistical characteristics of the diurnal-scale signature of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract the signal corresponding to diurnal and subdiurnal variability. Subsequently, the 3-hourly time period or the octet of rainfall peak for this filtered signal, referred to as the ``peak octet,'' is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that over the Bay of Bengal, there are three distinct modes of the peak octet of diurnal rainfall corresponding to 1130, 1430, and 1730 Indian standard time (IST), from the north central to south bay. This finding could be seen to be consistent with southward propagation of the diurnal rainfall pattern reported by earlier studies. Over the Arabian Sea, there is a spatially coherent pattern in the mode of the peak octet (1430 IST), in a region where it rains for more than 30% of the time. In the equatorial Indian Ocean, while most of the western part shows a late night/early morning peak, the eastern part does not show a spatially coherent pattern in the mode of the peak octet owing to the occurrence of a ual maxima (early morng and early/late afternoon). The imalayan foothills were found to have a mode of peak octet corresponding to 0230 IST, whereas over the Burmese mountains and the Western Ghats (west coast of India) the rainfall peaks during late afternoon/early evening (1430-1730 IST). This implies that the phase of the diurnal cycle over inland orography (e. g., Himalayas) is significantly different from coastal orography (e. g., Western Ghats). We also find that over the Gangetic plains, the peak octet is around 1430 IST, a few hours earlier compared to the typical early evening maxima over land.
Resumo:
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.
Resumo:
This paper describes an approach based on Zernike moments and Delaunay triangulation for localization of hand-written text in machine printed text documents. The Zernike moments of the image are first evaluated and we classify the text as hand-written using the nearest neighbor classifier. These features are independent of size, slant, orientation, translation and other variations in handwritten text. We then use Delaunay triangulation to reclassify the misclassified text regions. When imposing Delaunay triangulation on the centroid points of the connected components, we extract features based on the triangles and reclassify the text. We remove the noise components in the document as part of the preprocessing step so this method works well on noisy documents. The success rate of the method is found to be 86%. Also for specific hand-written elements such as signatures or similar text the accuracy is found to be even higher at 93%.
Resumo:
Grewia tiliaefolia is widely used in traditional Indian medicines to cure jaundice, biliousness, dysentery and the diseases of blood. Bioassay-guided fractionation of methanolic extract of the G. tiliaefolia bark has resulted in the isolation of D-erythro-2-hexenoic acid gamma-lactone (EHGL) and gulonic acid gamma-lactone (GAGL). Hepatoprotective activity of the methanolic extract and the isolated constituents were evaluated against CCl4-induced hepatotoxicity in rats. The treatment with methanolic extract, EHGL and GAGL at oral doses of 100, 150 and 60 mg/kg respectively with concomitant CCl4 intraperitoneal injection (I ml/kg) significantly reduced the elevated plasma levels of aminotransferases, alkaline phosphatase and the incidence of liver necrosis compared with the CCl4-injected group without affecting the concentrations of serum bilirubin and hepatic markers. EHGL and GAGL significantly inhibited the elevated levels of thiobarbituric acid reactive substances and glutathione in liver homogenates. Histology of the liver tissues of the extract and isolated constituents treated groups showed the presence of normal hepatic cords, absence of necrosis and fatty infiltration as similar to the normal control. The results revealed that the hepatoprotective activity of EHGL is significant as similar to the standard drug silymarin. To clarify the influence of the extract and isolated constituents on the protection of oxidative-hepatic damage, we examined in vitro antioxidant properties of the test compounds. The extract and the constituents showed significant free radical scavenging activity. These results suggest that the extract as well as the constituents could protect the hepatocytes from CCl4-induced liver damage perhaps, by their anti-oxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4, (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
Several excited states of Ds and Bs mesons have been discovered in the last six years: BaBar, Cleo and Belle discovered the very narrow states D(s0)*(2317)+- and D(s1)(2460)+- in 2003, and CDF and DO Collaborations reported the observation of two narrow Bs resonances, B(s1)(5830)0 and B*(s2)(5840)0 in 2007. To keep up with experiment, meson excited states should be studied from the theoretical aspect as well. The theory that describes the interaction between quarks and gluons is quantum chromodynamics (QCD). In this thesis the properties of the meson states are studied using the discretized version of the theory - lattice QCD. This allows us to perform QCD calculations from first principles, and "measure" not just energies but also the radial distributions of the states on the lattice. This gives valuable theoretical information on the excited states, as we can extract the energy spectrum of a static-light meson up to D wave states (states with orbital angular momentum L=2). We are thus able to predict where some of the excited meson states should lie. We also pay special attention to the order of the states, to detect possible inverted spin multiplets in the meson spectrum, as predicted by H. Schnitzer in 1978. This inversion is connected to the confining potential of the strong interaction. The lattice simulations can also help us understand the strong interaction better, as the lattice data can be treated as "experimental" data and used in testing potential models. In this thesis an attempt is made to explain the energies and radial distributions in terms of a potential model based on a one-body Dirac equation. The aim is to get more information about the nature of the confining potential, as well as to test how well the one-gluon exchange potential explains the short range part of the interaction.
Resumo:
In this paper the approach for automatic road extraction for an urban region using structural, spectral and geometric characteristics of roads has been presented. Roads have been extracted based on two levels: Pre-processing and road extraction methods. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, parking lots, vegetation regions and other open spaces). The road segments are then extracted using Texture Progressive Analysis (TPA) and Normalized cut algorithm. The TPA technique uses binary segmentation based on three levels of texture statistical evaluation to extract road segments where as, Normalizedcut method for road extraction is a graph based method that generates optimal partition of road segments. The performance evaluation (quality measures) for road extraction using TPA and normalized cut method is compared. Thus the experimental result show that normalized cut method is efficient in extracting road segments in urban region from high resolution satellite image.
Resumo:
New stars in galaxies form in dense, molecular clouds of the interstellar medium. Measuring how the mass is distributed in these clouds is of crucial importance for the current theories of star formation. This is because several open issues in them, such as the strength of different mechanism regulating star formation and the origin of stellar masses, can be addressed using detailed information on the cloud structure. Unfortunately, quantifying the mass distribution in molecular clouds accurately over a wide spatial and dynamical range is a fundamental problem in the modern astrophysics. This thesis presents studies examining the structure of dense molecular clouds and the distribution of mass in them, with the emphasis on nearby clouds that are sites of low-mass star formation. In particular, this thesis concentrates on investigating the mass distributions using the near infrared dust extinction mapping technique. In this technique, the gas column densities towards molecular clouds are determined by examining radiation from the stars that shine through the clouds. In addition, the thesis examines the feasibility of using a similar technique to derive the masses of molecular clouds in nearby external galaxies. The papers presented in this thesis demonstrate how the near infrared dust extinction mapping technique can be used to extract detailed information on the mass distribution in nearby molecular clouds. Furthermore, such information is used to examine characteristics crucial for the star formation in the clouds. Regarding the use of extinction mapping technique in nearby galaxies, the papers of this thesis show that deriving the masses of molecular clouds using the technique suffers from strong biases. However, it is shown that some structural properties can still be examined with the technique.
Resumo:
The first quarter of the 20th century witnessed a rebirth of cosmology, study of our Universe, as a field of scientific research with testable theoretical predictions. The amount of available cosmological data grew slowly from a few galaxy redshift measurements, rotation curves and local light element abundances into the first detection of the cos- mic microwave background (CMB) in 1965. By the turn of the century the amount of data exploded incorporating fields of new, exciting cosmological observables such as lensing, Lyman alpha forests, type Ia supernovae, baryon acoustic oscillations and Sunyaev-Zeldovich regions to name a few. -- CMB, the ubiquitous afterglow of the Big Bang, carries with it a wealth of cosmological information. Unfortunately, that information, delicate intensity variations, turned out hard to extract from the overall temperature. Since the first detection, it took nearly 30 years before first evidence of fluctuations on the microwave background were presented. At present, high precision cosmology is solidly based on precise measurements of the CMB anisotropy making it possible to pinpoint cosmological parameters to one-in-a-hundred level precision. The progress has made it possible to build and test models of the Universe that differ in the way the cosmos evolved some fraction of the first second since the Big Bang. -- This thesis is concerned with the high precision CMB observations. It presents three selected topics along a CMB experiment analysis pipeline. Map-making and residual noise estimation are studied using an approach called destriping. The studied approximate methods are invaluable for the large datasets of any modern CMB experiment and will undoubtedly become even more so when the next generation of experiments reach the operational stage. -- We begin with a brief overview of cosmological observations and describe the general relativistic perturbation theory. Next we discuss the map-making problem of a CMB experiment and the characterization of residual noise present in the maps. In the end, the use of modern cosmological data is presented in the study of an extended cosmological model, the correlated isocurvature fluctuations. Current available data is shown to indicate that future experiments are certainly needed to provide more information on these extra degrees of freedom. Any solid evidence of the isocurvature modes would have a considerable impact due to their power in model selection.
Resumo:
Inelastic x-ray scattering can be used to study the electronic structure of matter. The x rays scattered from the target both induce and carry information on the electronic excitations taking place in the system. These excitations are the manifestations of the electronic structure and the physics governing the many-body system. This work presents results of non-resonant inelastic x-ray scattering experiments on a range of materials including metallic, insulating and semiconducting compounds as well as an organic polymer. The experiments were carried out at the National Synchrotron Light Source, USA and at the European Synchrotron Radiation Facility, France. The momentum transfer dependence of the experimental valence- and core-electron excitation spectra is compared with the results of theoretical first principles computations that incorporate the electron-hole interaction. A recently developed method for analyzing the momentum transfer dependence of core-electron excitation spectra is studied in detail. This method is based on real space multiple scattering calculations and is used to extract the angular symmetry components of the local unoccupied density of final states.
Resumo:
Ethanolic whole plant extracts obtained from Cuscuta reflexa Roxb were screened against Gram positive (Bacillus subtilis and Staphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhi) bacteria to evaluate their antimicrobial activity. Of the four concentrations of plant extract tested (200 µg/mL, 300 µg/mL, 400 µg/mL or 500 µg/mL), 500 µg/mL elicited the greatest zones of bacterial inhibition across three of the bacteria. In contrast, the growth of Salmonella typhi was not halted regardless of extract concentration. At 200 µg/mL, only the growth of E. coli was inhibited. Overall, although the greatest antimicrobial activity was demonstrated to be against E. coli at a concentration of 500 µg/mL (24.6±0.24), upon comparison to the other bacteria, both B. cereus and S. aureus educed similar zones of inhibition upon comparison to their positive antibiotic control.