955 resultados para Solar Tower Technology
Resumo:
There is a growing gap between engineering practice and engineering education that may be contributing to less engineers practicing in industry. Coaching approach to learning and teaching has been proven to be an effective way to develop people in the workplace. A pilot coaching program is offered to Engineering and Technology students in Queensland University of Technology to enable holistic growth in order to better integrate them to the work force and society at large. The results and findings of this program will be published once the program has been completed
Resumo:
Amongst the most prominent uses of Twitter at present is its role in the discussion of widely televised events: Twitter’s own statistics for 2011, for example, list major entertainment spectacles (the MTV Music Awards, the BET Awards) and sports matches (the UEFA Champions League final, the FIFA Women’s World Cup final) amongst the events generating the most tweets per second during the year (Twitter, 2011). User activities during such televised events constitute a specific, unique category of Twitter use, which differs clearly from the other major events which generate a high rate of tweets per second (such as crises and breaking news, from the Japanese earthquake and tsunami to the death of Steve Jobs), as preliminary research has shown. During such major media events, by contrast, Twitter is used most predominantly as a technology of fandom instead: it serves in the first place as a backchannel to television and other streaming audiovisual media, enabling users offer their own running commentary on the universally shared media text of the event broadcast as it unfolds live. Centrally, this communion of fans around the shared text is facilitated by the use of Twitter hashtags – unifying textual markers which are now often promoted to prospective audiences by the broadcasters well in advance of the live event itself. This paper examines the use of Twitter as a technology for the expression of shared fandom in the context of a major, internationally televised annual media event: the Eurovision Song Contest. It constitutes a highly publicised, highly choreographed media spectacle whose eventual outcomes are unknown ahead of time and attracts a diverse international audience. Our analysis draws on comprehensive datasets for the ‘official’ event hashtags, #eurovision, #esc, and #sbseurovision. Using innovative methods which combine qualitative and quantitative approaches to the analysis of Twitter datasets containing several hundreds of thousands, we examine overall patterns of participation to discover how audiences express their fandom throughout the event. Minute-by-minute tracking of Twitter activity during the live broadcasts enables us to identify the most resonant moments during each event; we also examine the networks of interaction between participants to detect thematically or geographically determined clusters of interaction, and to identify the most visible and influential participants in each network. Such analysis is able to provide a unique insight into the use of Twitter as a technology for fandom and for what in cultural studies research is called ‘audiencing’: the public performance of belonging to the distributed audience for a shared media event. Our work thus contributes to the examination of fandom practices led by Henry Jenkins (2006) and other scholars, and points to Twitter as an important new medium facilitating the connection and communion of such fans.
Resumo:
Ingredients: - 1 cup Vision - 100ml ‘Real World’ Application - 100ml Unit Structure/Organisation - 100ml Student-centric Approach [optional: Add Social Media/Popular Culture for extra goodness] - Large Dollop of Passion + Enthusiasm - Sprinkle of Approachability Mix all ingredients well. Cover and leave to rise in a Lecture Theatre for 1.5 hours. Cook in a Classroom for 1.5 hours. Garnish with a dash of Humour before serving. Serves 170 Students
Resumo:
Climate change and land use pressures are making environmental monitoring increasingly important. As environmental health is degrading at an alarming rate, ecologists have tried to tackle the problem by monitoring the composition and condition of environment. However, traditional monitoring methods using experts are manual and expensive; to address this issue government organisations designed a simpler and faster surrogate-based assessment technique for consultants, landholders and ordinary citizens. However, it remains complex, subjective and error prone. This makes collected data difficult to interpret and compare. In this paper we describe a work-in-progress mobile application designed to address these shortcomings through the use of augmented reality and multimedia smartphone technology.
Resumo:
This chapter provides an indepth examination of the history of product placement in the James Bond film series, specifically focusing on the emergence of technology and gadgetry in the series and the impact this had on the number and types of products that were placed in the films.
Resumo:
Before e-Technology’s effects on users can be accurately measured, those users must be fully engaged with the relevant systems and services. That is they must be able to function as part of the digital economy. The paper refers to this ‘user functionality’ as t-Engagement. Not all users are t-Engaged and in many instances achieving t-Engagement will require assistance from external sources. This paper identifies the current state of Australia’s regional digital economy readiness and highlights the role of Local Government Authorities (‘LGAs’) in enabling t-Engagement. The paper analyses responses to the 2012 BTA, NBN and Digital Economy Survey by LGA and other regional organizations within Australia. The paper’s particular focus is on the level of use by Local Government Authorities of federal, state and other programs designed to enable t-Engagement. The analysis confirms the role of LGAs in enabling t-Engagement and in promoting Australia’s digital economy. The paper concludes by reinforcing the need to ensure ongoing meaningful federal and State support of regional initiatives, as well as identifying issues requiring specific attention.
Resumo:
A Poly (ethylene oxide) based polymer electrolyte impregnated with 2-Mercapto benzimidazole was comprehensively characterized by XRD, UV–visible spectroscopy, FTIR as well as electrochemical impedance spectroscopy. It was found that the crystallization of PEO was dramatically reduced and the ionic conductivity of the electrolyte was increased 4.5 fold by addition of 2-Mercapto benzimidazole. UV–visible and FTIR spectroscopes indicated the formation of charge transfer complex between 2-Mercapto benzimidazole and iodine of the electrolyte. Dye-sensitized solar cells with the polymer electrolytes were assembled. It was found that both the photocurrent density and photovoltage were enhanced with respect to the DSC without 2-Mercapto benzimidazole, leading to a 60% increase of the performance of the cell.
Resumo:
The influence of different electrolyte cations ((Li+, Na+, Mg2+, tetrabutyl ammonium (TBA+)) on the TiO2 conduction band energy (Ec) the effective electron lifetime (τn), and the effective electron diffusion coefficient (Dn) in dye-sensitized solar cells (DSCs) was studied quantitatively. The separation between Ec and the redox Fermi level, EF,redox, was found to decrease as the charge/radius ratio of the cations increased. Ec in the Mg2+ electrolyte was found to be 170 meV lower than that in the Na+ electrolyte and 400 meV lower than that in the TBA+ electrolyte. Comparison of Dn and τn in the different electrolytes was carried out by using the trapped electron concentration as a measure of the energy difference between Ec and the quasi-Fermi level, nEF, under different illumination levels. Plots of Dn as a function of the trapped electron density, nt, were found to be relatively insensitive to the electrolyte cation, indicating that the density and energetic distribution of electron traps in TiO2 are similar in all of the electrolytes studied. By contrast, plots of τn versus nt for the different cations showed that the rate of electron back reaction is more than an order of magnitude faster in the TBA+ electrolyte compared with the Na+ and Li+ electrolytes. The electron diffusion lengths in the different electrolytes followed the sequence of Na+ > Li+ > Mg2+ > TBA+. The trends observed in the AM 1.5 current–voltage characteristics of the DSCs are rationalized on the basis of the conduction band shifts and changes in electron lifetime.
Resumo:
Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.
Resumo:
Parabolic Trough Concentrators (PTC) are the most proven solar collectors for solar thermal power plants, and are suitable for concentrating photovoltaic (CPV) applications. PV cells are sensitive to spatial uniformity of incident light and the cell operating temperature. This requires the design of CPV-PTCs to be optimised both optically and thermally. Optical modelling can be performed using Monte Carlo Ray Tracing (MCRT), with conjugate heat transfer (CHT) modelling using the computational fluid dynamics (CFD) to analyse the overall designs. This paper develops and evaluates a CHT simulation for a concentrating solar thermal PTC collector. It uses the ray tracing work by Cheng et al. (2010) and thermal performance data for LS-2 parabolic trough used in the SEGS III-VII plants from Dudley et al. (1994). This is a preliminary step to developing models to compare heat transfer performances of faceted absorbers for concentrating photovoltaic (CPV) applications. Reasonable agreement between the simulation results and the experimental data confirms the reliability of the numerical model. The model explores different physical issues as well as computational issues for this particular kind of system modeling. The physical issues include the resultant non-uniformity of the boundary heat flux profile and the temperature profile around the tube, and uneven heating of the HTF. The numerical issues include, most importantly, the design of the computational domain/s, and the solution techniques of the turbulence quantities and the near-wall physics. This simulation confirmed that optical simulation and the computational CHT simulation of the collector can be accomplished independently.