939 resultados para Simplified adhesive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface proteolysis is important in migration of cells through tissue barriers. In the case of prokaryotes, surface proteolysis has been associated with invasiveness of pathogenic bacteria from the primary infection site into circulation and secondary infection sites in the host. This study addressed surface proteases of two important bacterial pathogens, Yersinia pestis which is the causative agent of the lethal systemic zoonosis, plague, and Salmonella enterica serovar Typhimurium which is an oral-faecal pathogen that annually causes millions of cases of gastoenteritis that may develop to septicaemia. Both bacterial species express an ortholog of the omptin family of transmembrane β-barrel, outer membrane proteases/adhesins. This thesis work addressed the functions of isolated plasminogen activator Pla of Y. pestis and the PgtE omptin of S. enterica. Pla and PgtE were isolated as His6-fusion proteins in denaturing conditions from recombinant Escherichia coli and activated by adding lipopolysaccharide (LPS). The structural features in LPS that enhance plasminogen activation by His6-Pla were determined, and it was found that the lack of O-specifi c chain, the presence of outer core oligosaccharide, the presence of phosphates in lipid A, as well as a low level of acylation in lipid A influence the enhancement of Pla activity by LPS. A conserved lipid A phosphate binding motif in Pla and PgtE was found important for the enhancement of enzymatic activity by LPS. The results help to explain the biological signifi cance of the genetic loss of the O-specifi c chain biosynthesis in Y. pestis as well as the variations in LPS structure upon entry of Y. pestis into the human host. Expression of Pla in Y. pestis is associated with adhesiveness to lamin of basement membranes. Here, isolated and LPS-activated His6-Pla was coated onto fluorescent microparticles. The coating conferred specifi c adhesiveness of the particles to laminin and reconstituted basement membrane, thus confi rming the intrinsic adhesive characteristics of the Pla protein. The adhesiveness is thought to direct plasmin proteolysis at tissue barriers, thus increasing tissue damage and bacterial spread. Gelatinase activity has not been previously reported in enteric bacteria. Expression of PgtE in S. enterica was associated with cleavage of porcine skin gelatin, denaturated human type I collagen, as well as DQ-gelatin. Purifi ed His6-PgtE also degraded porcine skin gelatin and human type I gelatin but did not react with DQ-gelatin, indicating that minor differences are seen in proteolysis by isolated and cell-bound PgtE. Pla was less effective in gelatin degradation. The novel gelatinase activity in S. enterica is likely to enhance bacterial dissemination during infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matrix of blood is a liquid plasma that transports molecules and blood cells within vessels lined by endothelial cells. High-mobility group B1 (HMGB1) is a protein expressed in blood cells. Under normal circumstances, HMGB1 is virtually absent from plasma, but during inflammation or trauma its level in plasma is increased. In resting and quiescent cells, HMGB1 is usually localized in the intracellular compartment, with the exception of motile cells that express HMGB1 on their outer surface to mediate cell migration. During cell transformation or immune cell activation HMGB1 can be actively secreted outside of the cell. Further, when a cell is damaged, HMGB1 can passively leak into extracellular environment. Extracellular HMGB1 can then participate in regulation of the immune response and under some conditions it can mediate lethality in systemic inflammatory response. The aim of this study was to evaluate the expression and functions of HMGB1 in cells of the vascular system and to investigate the prognostic value of circulating HMGB1 in severe sepsis and septic shock. HMGB1 was detected in platelets, leukocytes, and endothelial cells. HMGB1 was released from platelets and leukocytes, and it was found to mediate their adhesive and migratory functions. During severe infections the plasma levels of HMGB1 were elevated; however, no direct correlation with lethality was found. Further, the analysis of proinflammatory mechanisms suggested that HMGB1 forms complexes with other molecules to activate the immune system. In conclusion, HMGB1 is expressed in the cells of the vascular system, and it participates in inflammatory mechanisms by activating platelets and leukocytes and by mediating monocyte migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed boundary value problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite parallel-sided composite slab, is solved completely by using the Wiener-Hopf technique. An analytical expression is derived for the sputtering temperature at the quench front being created by a cold fluid moving on the upper surface of the slab at a constant speed v. The dependence of the various configurational parameters of the problem under consideration, on the sputtering temperature, is rather complicated and representative tables of numerical values of this important physical quantity are prepared for certain typical values of these parameters. Asymptotic results in their most simplified forms are also obtained when (i) the ratio of the thicknesses of the two materials comprising the slab is very much smaller than unity, and (ii) the quench-front speed v is very large, keeping the other parameters fixed, in both the cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonexhaustive procedure for obtaining minimal Reed-Muller canonical (RMC) forms of switching functions is presented. This procedure is a modification of a procedure presented earlier in the literature and enables derivation of an upper bound on the number of RMC forms to be derived to choose a minimal one. It is shown that the task of obtaining minimal RMC forms is simplified in the case of symmetric functions and self-dual functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The idea of extracting knowledge in process mining is a descendant of data mining. Both mining disciplines emphasise data flow and relations among elements in the data. Unfortunately, challenges have been encountered when working with the data flow and relations. One of the challenges is that the representation of the data flow between a pair of elements or tasks is insufficiently simplified and formulated, as it considers only a one-to-one data flow relation. In this paper, we discuss how the effectiveness of knowledge representation can be extended in both disciplines. To this end, we introduce a new representation of the data flow and dependency formulation using a flow graph. The flow graph solves the issue of the insufficiency of presenting other relation types, such as many-to-one and one-to-many relations. As an experiment, a new evaluation framework is applied to the Teleclaim process in order to show how this method can provide us with more precise results when compared with other representations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is demonstrated that the titled reactions are best carried out at high concentrations, as indicated by mechanistic considerations: the observed high reaction orders and the possibility that the Cannizzaro reaction is driven by the hydrophobic effect, which effects proximity between the two molecules of the aldehyde reactant. The present studies have led to improved conditions, simplified workup, and excellent yields of products. The Tishchenko reaction converted benzaldehyde to benzyl benzoate with catalytic NaOMe/tetrahydrafuran in good yield, which is apparently unprecedented for this product of high commercial value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a simplified technique for dual wavelength operation of an extended cavity semiconductor laser, and its characterization using electromagnetically induced transparency (EIT). In this laser cavity scheme light beam is made converging before it incidences on the cavity grating. The converging angle of the beam creates two longitudinal oscillating modes of resonating cavity. Frequency separation between the longitudinal modes are measured with the help of beat frequency generation in a photodiode and creating pair of EIT spectra in Rb vapor. The pair of EIT dips that are generated due to dual wavelength of this laser (that is used as control laser) can be used to estimate frequency difference between the generated wavelengths. Width of EIT spectra can be used to estimate line width of individual wavelength components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nature is a school for scientists and engineers. Inherent multiscale structures of biological materials exhibit multifunctional integration. In nature, the lotus, the water strider, and the flying bird evolved different and optimized biological solutions to survive. In this contribution, inspired by the optimized solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, and superior repellency towards different corrosive solutions. This approach provides an effective avenue to the development of water strider robots and other aquatic smart devices floating on water. Furthermore, the resultant multifunctional metallic foam can be used to construct an oil/water separation apparatus, exhibiting a high separation efficiency and long-term repeatability. The presented approach should provide a promising solution for the design and construction of other multifunctional metallic foams in a large scale for practical applications in the petro-chemical field. Optimized biological solutions continue to inspire and to provide design idea for the construction of multiscale structures with multifunctional integration. Inspired by the optimized biological solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, stable corrosion resistance, and oil/water separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globally, lung cancer accounts for approximately 20% of all cancer related deaths. Five-year survival is poor and rates have remained unchanged for the past four decades. There is an urgent need to identify markers of lung carcinogenesis and new targets for therapy. Given the recent successes of immune modulators in cancer therapy and the improved understanding of immune evasion by tumours, we sought to determine the carcinogenic impact of chronic TNF-α and IL-1β exposure in a normal bronchial epithelial cell line model. Following three months of culture in a chronic inflammatory environment under conditions of normoxia and hypoxia (0.5% oxygen), normal cells developed a number of key genotypic and phenotypic alterations. Important cellular features such as the proliferative, adhesive and invasive capacity of the normal cells were significantly amplified. In addition, gene expression profiles were altered in pathways associated with apoptosis, angiogenesis and invasion. The data generated in this study provides support that TNF-α, IL-1β and hypoxia promotes a neoplastic phenotype in normal bronchial epithelial cells. In turn these mediators may be of benefit for biomarker and/or immune-therapy target studies. This project provides an important inflammatory in vitro model for further immuno-oncology studies in the lung cancer setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the development of simplified semi-empirical relations for the prediction of residual velocities of small calibre projectiles impacting on mild steel target plates, normally or at an angle, and the ballistic limits for such plates. It has been shown, for several impact cases for which test results on perforation of mild steel plates are available, that most of the existing semi-empirical relations which are applicable only to normal projectile impact do not yield satisfactory estimations of residual velocity. Furthermore, it is difficult to quantify some of the empirical parameters present in these relations for a given problem. With an eye towards simplicity and ease of use, two new regression-based relations employing standard material parameters have been discussed here for predicting residual velocity and ballistic limit for both normal and oblique impact. The latter expressions differ in terms of usage of quasi-static or strain rate-dependent average plate material strength. Residual velocities yielded by the present semi-empirical models compare well with the experimental results. Additionally, ballistic limits from these relations show close correlation with the corresponding finite element-based predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.