924 resultados para Research Subject Categories::TECHNOLOGY::Civil engineering and architecture::Other civil engineering and architecture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aims to analyze the IT architecture management practices associated with their degree of maturity and the influence of institutional and strategic factors on the decisions involved through a case study in a large telecom organization. The case study allowed us to identify practices that led the company to its current stage of maturity and identify practices that can lead the company to the next stage. The strategic influence was mentioned by most respondents and the institutional influence was present in decisions related to innovation and those dealing with a higher level of uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broad consensus has been reached within the Education and Cognitive Psychology research communities on the need to center the learning process on experimentation and concrete application of knowledge, rather than on a bare transfer of notions. Several advantages arise from this educational approach, ranging from the reinforce of students learning, to the increased opportunity for a student to gain greater insight into the studied topics, up to the possibility for learners to acquire practical skills and long-lasting proficiency. This is especially true in Engineering education, where integrating conceptual knowledge and practical skills assumes a strategic importance. In this scenario, learners are called to play a primary role. They are actively involved in the construction of their own knowledge, instead of passively receiving it. As a result, traditional, teacher-centered learning environments should be replaced by novel learner-centered solutions. Information and Communication Technologies enable the development of innovative solutions that provide suitable answers to the need for the availability of experimentation supports in educational context. Virtual Laboratories, Adaptive Web-Based Educational Systems and Computer-Supported Collaborative Learning environments can significantly foster different learner-centered instructional strategies, offering the opportunity to enhance personalization, individualization and cooperation. More specifically, they allow students to explore different kinds of materials, to access and compare several information sources, to face real or realistic problems and to work on authentic and multi-facet case studies. In addition, they encourage cooperation among peers and provide support through coached and scaffolded activities aimed at fostering reflection and meta-cognitive reasoning. This dissertation will guide readers within this research field, presenting both the theoretical and applicative results of a research aimed at designing an open, flexible, learner-centered virtual lab for supporting students in learning Information Security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, the building materials and construction industry has been contributing to a great extent to generate a high impact on our environment. As it has been considered one of the key areas in which to operate to significantly reduce our footprint on environment, there has been widespread belief that particular attention now has to be paid and specific measures have to be taken to limit the use of non-renewable resources.The aim of this thesis is therefore to study and evaluate sustainable alternatives to commonly used building materials, mainly based on ordinary Portland Cement, and find a supportable path to reduce CO2 emissions and promote the re-use of waste materials. More specifically, this research explores different solutions for replacing cementitious binders in distinct application fields, particularly where special and more restricting requirements are needed, such as restoration and conservation of architectural heritage. Emphasis was thus placed on aspects and implications more closely related to the concept of non-invasivity and environmental sustainability. A first part of the research was addressed to the study and development of sustainable inorganic matrices, based on lime putty, for the pre-impregnation and on-site binding of continuous carbon fiber fabrics for structural rehabilitation and heritage restoration. Moreover, with the aim to further limit the exploitation of non-renewable resources, the synthesis of chemically activated silico-aluminate materials, as metakaolin, ladle slag or fly ash, was thus successfully achieved. New sustainable binders were hence proposed as novel building materials, suitable to be used as primary component for construction and repair mortars, as bulk materials in high-temperature applications or as matrices for high-toughness fiber reinforced composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this article was to record reporting characteristics related to study quality of research published in major specialty dental journals with the highest impact factor (Journal of Endodontics, Journal of Oral and Maxillofacial Surgery, American Journal of Orthodontics and Dentofacial Orthopedics; Pediatric Dentistry, Journal of Clinical Periodontology, and International Journal of Prosthetic Dentistry). The included articles were classified into the following 3 broad subject categories: (1) cross-sectional (snap-shot), (2) observational, and (3) interventional. Multinomial logistic regression was conducted for effect estimation using the journal as the response and randomization, sample calculation, confounding discussed, multivariate analysis, effect measurement, and confidence intervals as the explanatory variables. The results showed that cross-sectional studies were the dominant design (55%), whereas observational investigations accounted for 13%, and interventions/clinical trials for 32%. Reporting on quality characteristics was low for all variables: random allocation (15%), sample size calculation (7%), confounding issues/possible confounders (38%), effect measurements (16%), and multivariate analysis (21%). Eighty-four percent of the published articles reported a statistically significant main finding and only 13% presented confidence intervals. The Journal of Clinical Periodontology showed the highest probability of including quality characteristics in reporting results among all dental journals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explored how academics' beliefs about teaching and learning influenced their teaching in engineering science courses typically taught in the second or third year of 4-year engineering undergraduate degrees. Data were collected via a national survey of 166 U. S. statics instructors and interviews at two different institutions with 17 instructors of engineering science courses such as thermodynamics, circuits and statics. The study identified a number of common beliefs about how to best support student learning of these topics; each is discussed in relation to the literature about student development and learning. Specific recommendations are given for educational developers to encourage use of research-based instructional strategies in these courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land surface temperature (LST) plays a key role in governing the land surface energy budget, and measurements or estimates of LST are an integral part of many land surface models and methods to estimate land surface sensible heat (H) and latent heat fluxes. In particular, the LST anchors the potential temperature profile in Monin-Obukhov similarity theory, from which H can be derived. Brutsaert has made important contributions to our understanding the nature of surface temperature measurements as well as the practical but theoretically sound use of LST in this framework. His work has coincided with the wide-spread availability of remotely sensed LST measurements. Use of remotely sensed LST estimates inevitably involves complicating factors, such as: varying spatial and temporal scales in measurements, theory, and models; spatial variability of LST and H; the relationship between measurements of LST and the temperature felt by the atmosphere; and the need to correct satellite-based radiometric LST measurements for the radiative effects of the atmosphere. This paper reviews the progress made in research in these areas by tracing and commenting on Brutsaert's contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterizing the spatial scaling and dynamics of convective precipitation in mountainous terrain and the development of downscaling methods to transfer precipitation fields from one scale to another is the overall motivation for this research. Substantial progress has been made on characterizing the space-time organization of Midwestern convective systems and tropical rainfall, which has led to the development of statistical/dynamical downscaling models. Space-time analysis and downscaling of orographic precipitation has received less attention due to the complexities of topographic influences. This study uses multiscale statistical analysis to investigate the spatial scaling of organized thunderstorms that produce heavy rainfall and flooding in mountainous regions. Focus is placed on the eastern and western slopes of the Appalachian region and the Front Range of the Rocky Mountains. Parameter estimates are analyzed over time and attention is given to linking changes in the multiscale parameters with meteorological forcings and orographic influences on the rainfall. Influences of geographic regions and predominant orographic controls on trends in multiscale properties of precipitation are investigated. Spatial resolutions from 1 km to 50 km are considered. This range of spatial scales is needed to bridge typical scale gaps between distributed hydrologic models and numerical weather prediction (NWP) forecasts and attempts to address the open research problem of scaling organized thunderstorms and convection in mountainous terrain down to 1-4 km scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.