876 resultados para Probabilistic Finite Automata
Resumo:
[EN]Ensemble forecasting is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in. The wind field forecasting is based on a mass-consistent model and a log-linear wind profile using as input data the resulting forecast wind from Harmonie, a Non-Hydrostatic Dynamic model used experimentally at AEMET with promising results. The mass-consistent model parameters are estimated by using genetic algorithms. The mesh is generated using the meccano method and adapted to the geometry…
Resumo:
Eine Gruppe G hat endlichen Prüferrang (bzw. Ko-zentralrang) kleiner gleich r, wenn für jede endlich erzeugte Gruppe H gilt: H (bzw. H modulo seinem Zentrum) ist r-erzeugbar. In der vorliegenden Arbeit werden, soweit möglich, die bekannten Sätze über Gruppen von endlichem Prüferrang (kurz X-Gruppen), auf die wesentlich größere Klasse der Gruppen mit endlichem Ko-zentralrang (kurz R-Gruppen) verallgemeinert.Für lokal nilpotente R-Gruppen, welche torsionsfrei oder p-Gruppen sind, wird gezeigt, dass die Zentrumsfaktorgruppe eine X-Gruppe sein muss. Es folgt, dass Hyperzentralität und lokale Nilpotenz für R-Gruppen identische Bediungungen sind. Analog hierzu sind R-Gruppen genau dann lokal auflösbar, wenn sie hyperabelsch sind. Zentral für die Strukturtheorie hyperabelscher R-Gruppen ist die Tatsache, dass solche Gruppen eine aufsteigende Normalreihe abelscher X-Gruppen besitzen. Es wird eine Sylowtheorie für periodische hyperabelsche R-Gruppen entwickelt. Für torsionsfreie hyperabelsche R-Gruppen wird deren Auflösbarkeit bewiesen. Des weiteren sind lokal endliche R-Gruppen fast hyperabelsch. Für R-Gruppen fallen sehr große Gruppenklassen mit den fast hyperabelschen Gruppen zusammen. Hierzu wird der Begriff der Sektionsüberdeckung eingeführt und gezeigt, dass R-Gruppen mit fast hyperabelscher Sektionsüberdeckung fast hyperabelsch sind.
Resumo:
A finite-strain study in the Gran Paradiso massif of the Italian Western Alps has been carried out to elucidate whether ductile strain shows a relationship to nappe contacts and to shed light on the nature of the subhorizontal foliation typical of the gneiss nappes in the Alps. The Rf/_ and Fry methods used on feldspar porphyroclasts from 143 augengneiss and 11 conglomerate samples of the Gran Paradiso unit (upper tectonic unit of the Gran Paradiso massif), as well as, 9 augengneiss (Erfaulet granite) and 3 quartzite conglomerate samples from the underlying Erfaulet unit (lower unit of the Gran Paradiso massif), and 1 sample from mica schist. Microstructures and thermobarometric data show that feldspar ductility at temperatures >~450°C occurred only during high-pressure metamorphism, when the rocks were underplated beneath the overriding Adriatic plate. Therefore, the finite-strain data can be related to high-pressure metamorphism in the Alpine subduction zone. The augen gneiss was heterogeneously deformed and axial ratios of the strain ellipse in XZ sections range from 2.1 to 69.8. The long axes of the finite-strain ellipsoids trend W/WNW and the short axes are subvertical associated with a subhorizontal foliation. The strain magnitudes do not increase towards the nappe contacts. Geochemical work shows that the accumulation of finite strain was not associated with any significant volume strain. Hence, the data indicate flattening strain type in the Gran Paradiso unit and constrictional strain type in the Erfaulet unit and prove deviations from simple shear. In addition, electron microprobe work was undertaken to determine if the analysed fabrics formed during high-P metamorphism. The chemistry of phengites in the studied samples suggests that deformation and final structural juxtaposition of the Gran Paradiso unit against the Erfaulet took place during high-pressure metamorphism. On the other hand, nappe stacking occurred early during subduction probably by brittle imbrication and that ductile strain was superimposed on and modified the nappe structure during high-pressure underplating in the Alpine subduction zone. The accumulation of ductile strain during underplating was not by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gran Paradiso massif. It is concluded that this foliation formed during thrusting of the nappes onto each other suggesting that nappe stacking was associated with vertical shortening. The primary evidence for this interpretation is an attenuated metamorphic section with high-pressure metamorphic rocks of the Gran Paradiso unit juxtaposed against the Erfaulet unit. Therefore, the exhumation during high-pressure metamorphism in the Alpine subduction zone involved a component of vertical shortening, which is responsible for the subhorizontal foliation within the nappes.
Resumo:
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
Resumo:
In 'Involutory reflection groups and their models' (F. Caselli, 2010), a uniform Gelfand model is constructed for all complex reflection groups G(r,p,n) satisfying GCD(p,n)=1,2 and for all their quotients modulo a scalar subgroup. The present work provides a refinement for this model. The final decomposition obtained is compatible with the Robinson-Schensted generalized correspondence.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The objective of the work is the evaluation of the potential capabilities of navigation satellite signals to retrieve basic atmospheric parameters. A capillary study have been performed on the assumptions more or less explicitly contained in the common processing steps of navigation signals. A probabilistic procedure has been designed for measuring vertical discretised profiles of pressure, temperature and water vapour and their associated errors. Numerical experiments on a synthetic dataset have been performed with the main objective of quantifying the information that could be gained from such approach, using entropy and relative entropy as testing parameters. A simulator of phase delay and bending of a GNSS signal travelling across the atmosphere has been developed to this aim.
Resumo:
Questa tesi si pone come obiettivo l'analisi delle componenti di sollecitazione statica di un serbatoio, in acciaio API 5L X52, sottoposto a carichi di flessione e pressione interna attraverso il programma agli elementi finiti PLCd4, sviluppato presso l'International Center for Numerical Methods in Engineering (CIMNE - Barcelona). Questo tipo di analisi rientra nel progetto europeo ULCF, il cui traguardo è lo studio della fatica a bassissimo numero di cicli per strutture in acciaio. Prima di osservare la struttura completa del serbatoio è stato studiato il comportamento del materiale per implementare all'interno del programma una nuova tipologia di curva che rappresentasse al meglio l'andamento delle tensioni interne. Attraverso il lavoro di preparazione alla tesi è stato inserito all'interno del programma un algoritmo per la distribuzione delle pressioni superficiali sui corpi 3D, successivamente utilizzato per l'analisi della pressione interna nel serbatoio. Sono state effettuate analisi FEM del serbatoio in diverse configurazioni di carico ove si è cercato di modellare al meglio la struttura portante relativa al caso reale di "full scale test". Dal punto di vista analitico i risultati ottenuti sono soddisfacenti in quanto rispecchiano un corretto comportamento del serbatoio in condizioni di pressioni molto elevate e confermano la bontà del programma nell'analisi computazionale.
Resumo:
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
The thesis applies the ICC tecniques to the probabilistic polinomial complexity classes in order to get an implicit characterization of them. The main contribution lays on the implicit characterization of PP (which stands for Probabilistic Polynomial Time) class, showing a syntactical characterisation of PP and a static complexity analyser able to recognise if an imperative program computes in Probabilistic Polynomial Time. The thesis is divided in two parts. The first part focuses on solving the problem by creating a prototype of functional language (a probabilistic variation of lambda calculus with bounded recursion) that is sound and complete respect to Probabilistic Prolynomial Time. The second part, instead, reverses the problem and develops a feasible way to verify if a program, written with a prototype of imperative programming language, is running in Probabilistic polynomial time or not. This thesis would characterise itself as one of the first step for Implicit Computational Complexity over probabilistic classes. There are still open hard problem to investigate and try to solve. There are a lot of theoretical aspects strongly connected with these topics and I expect that in the future there will be wide attention to ICC and probabilistic classes.