964 resultados para Mg-doped ZnO quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390 nm) to blue (468 nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5 ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (tau(1h) = 196 +/- 17 ps) that is in the magnitude similar to electrons (tau(1e) = 354 +/- 32 ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have grown InAs self-assembled islands on vicinal GaAs( 001) substrates. Atomic force microscopy and photoluminescence studies show that the islands have a clear bimodal size distribution. While most of the small islands whose growth is limited by the width of one multi-atomic step have compact symmetric shapes, a large fraction of the large islands limited by the width of one step plus one terrace have asymmetric shapes which are elongated along the multi-atomic step lines. These results can be attributed to the shape-related energy of the islands at different states of their growth. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-doped ZnO (Zn1-xCoxO) thin films were fabricated by reactive magnetron cosputtering. The processing conditions were carefully designed to avoid the occurrence of Co precipitations. The films are c-axis oriented, and the solubility limit of Co in ZnO is less than 17%, determined by x-ray diffraction. X-ray photoemission spectroscopy measurements show Co ions have a chemical valance of 2+. In this paper, hysteresis loops were clearly observed for Zn1-xCoxO films at room temperature. The coercive field, as well as saturation magnetization per Co atom, decreases with increasing Co content, within the range of 0.07

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs self-organized nanostructures in In0.52Al0.48As matrix have been grown on InP (001) substrates by molecular beam epitaxy. The morphologies of the nanostructures are found to be strongly dependent on the growth rate of the InAs layer. By increasing the growth rate from 0.005 to 0.35 ML/s, the morphology of the nanostructure changes from wire to elongated dot and then changes back to wire again. Polarized photoluminescence of the InAs quantum wires and quantum dots are performed at 77 K, which are characterized by strong optical anisotropies. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A columnal islands system, which was composed of three layers of self-assembled InAs/GaAs quantum dots (QDs), has been fabricated by solid-source molecular beam epitaxy (MBE) through S-K mode on a (100) semi-insulating GaAs substrate. The effects of the thickness of GaAs space layer, the growth interruption time and the amount of InAs deposition on the emission wavelength of columnal islands were presented. The image of atomic force microscopy (AFM) indicated the columnal islands with high uniformity in size and shape. At room temperature, the emission wavelength of columnal islands with different effective heights was achieved 1.32 and 1.4 mum; however, the emission wavelength of single-layer QDs with normal height was just 1. l mum. It provides a useful and intuitive approach to artificially control the emission wavelength of a QD material system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach for positioning InAs islands on GaAs(110) by cleaved-edge overgrowth is reported. The first growth sample contains a strained InxGa1-xAs/GaAs superlattice of varying indium fraction and thickness, which acts as a strain nanopattern for the cleaved edge overgrowth. The formation of aligned islands is observed by means of atomic force microscopy. The ordering of the aligned islands and the structure of a single InAs island are found to depend on the properties of the underlying InxGa1-xAs/GaAs superlattice and molecular beam epitaxy growth conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Illustrated in this paper are two examples of altering planar growth into self-assembled island formation by adapting experimental conditions. Partial oxidation, undersaturated solution and high temperature change Frank-Van der Merwe (FM) growth of Al0.3Ga0.7As in liquid phase epitaxy (LPE) into isolated island deposition. Low growth speed, high temperature and in situ annealing in molecular beam epitaxy (MBE) cause the origination of InAs/GaAs quantum dots (QDs) to happen while the film is still below critical thickness in Stranski-Krastanow (SK) mode. Sample morphologies are characterized by scanning electron microscopy (SEM) or atomic force microscopy (AFM). It is suggested that such achievements are of value not only to fundamental researches but also to spheres of device applications as well. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/lnP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. Laser devices and superluminescent diodes were fabricated with InAs/GaAs self-assembled quantum dots as the active region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ photoluminescence (PL) and time-resolved PL to study exciton localization effect in InGaN epilayers. By measuring the exciton decay time as a, function of the monitored emission energy at different temperatures, we have found unusual behaviour of the energy dependence in the PL decay process. At low temperature, the measured PL decay time increases with the emission energy. It decreases with the emission energy at 200K, and remains nearly constant at the intermediate temperature of 120K. We have studied the dot size effect on the radiative recombination time by calculating the temperature dependence of the exciton recombination lifetime in quantum dots, and have found that the observed behaviour can be well correlated to the exciton localization in quantum dots. This suggestion is further supported by steady state PL results.