903 resultados para Maximum pseudo-likelihood
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.
Resumo:
The aim of this article is to discuss the estimation of the systematic risk in capital asset pricing models with heavy-tailed error distributions to explain the asset returns. Diagnostic methods for assessing departures from the model assumptions as well as the influence of observations on the parameter estimates are also presented. It may be shown that outlying observations are down weighted in the maximum likelihood equations of linear models with heavy-tailed error distributions, such as Student-t, power exponential, logistic II, so on. This robustness aspect may also be extended to influential observations. An application in which the systematic risk estimate of Microsoft is compared under normal and heavy-tailed errors is presented for illustration.
Resumo:
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.
Resumo:
Likelihood ratio tests can be substantially size distorted in small- and moderate-sized samples. In this paper, we apply Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-321] adjusted likelihood ratio statistic to exponential family nonlinear models. We show that the adjustment term has a simple compact form that can be easily implemented from standard statistical software. The adjusted statistic is approximately distributed as X(2) with high degree of accuracy. It is applicable in wide generality since it allows both the parameter of interest and the nuisance parameter to be vector-valued. Unlike the modified profile likelihood ratio statistic obtained from Cox and Reid [Cox, D.R., Reid, N., 1987. Parameter orthogonality and approximate conditional inference. journal of the Royal Statistical Society B49, 1-39], the adjusted statistic proposed here does not require an orthogonal parameterization. Numerical comparison of likelihood-based tests of varying dispersion favors the test we propose and a Bartlett-corrected version of the modified profile likelihood ratio test recently obtained by Cysneiros and Ferrari [Cysneiros, A.H.M.A., Ferrari, S.L.P., 2006. An improved likelihood ratio test for varying dispersion in exponential family nonlinear models. Statistics and Probability Letters 76 (3), 255-265]. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
We discuss the connection between information and copula theories by showing that a copula can be employed to decompose the information content of a multivariate distribution into marginal and dependence components, with the latter quantified by the mutual information. We define the information excess as a measure of deviation from a maximum-entropy distribution. The idea of marginal invariant dependence measures is also discussed and used to show that empirical linear correlation underestimates the amplitude of the actual correlation in the case of non-Gaussian marginals. The mutual information is shown to provide an upper bound for the asymptotic empirical log-likelihood of a copula. An analytical expression for the information excess of T-copulas is provided, allowing for simple model identification within this family. We illustrate the framework in a financial data set. Copyright (C) EPLA, 2009
Resumo:
Given a Lorentzian manifold (M,g), a geodesic gamma in M and a timelike Jacobi field Y along gamma, we introduce a special class of instants along gamma that we call Y-pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the Y-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field Y is obtained as the restriction of a globally defined timelike Killing vector field.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Modeling of spatial dependence structure, concerning geoestatistics approach, is an indispensable tool for fixing parameters that define this structure, applied on interpolation of values in places that are not sampled, by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations on sampled data. Thus, this trial aimed at using diagnostics techniques of local influence in spatial linear Gaussians models, applied at geoestatistics in order to evaluate sensitivity of maximum likelihood estimators and restrict maximum likelihood to small perturbations in these data. So, studies with simulated and experimental data were performed. Those results, obtained from the study of real data, allowed us to conclude that the presence of atypical values among the sampled data can have a strong influence on thematic maps, changing, therefore, the spatial dependence. The application of diagnostics techniques of local influence should be part of any geoestatistic analysis, ensuring that the information from thematic maps has better quality and can be used with greater security by farmers.
Resumo:
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998) This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Gawk 2009) which contains several lifetime models such as exponential geometric (Adamidis and Loukas 1998) exponential Poisson (Kus 2007) and exponential logarithmic (Tahmasbi and Rezaei 2008) distributions The hazard function of our class can be increasing decreasing and upside down bathtub shaped among others while the hazard function of an EPS distribution is only decreasing We obtain several properties of the WPS distributions such as moments order statistics estimation by maximum likelihood and inference for a large sample Furthermore the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints Special distributions are studied in some detail Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions (C) 2010 Elsevier B V All rights reserved