960 resultados para Maximum Degree Proximity algorithm (MAX-DPA)
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Classical serological screening assays for Chagas' disease are time consuming and subjective. The objective of the present work is to evaluate the enzyme immuno-assay (ELISA) methodology and to propose an algorithm for blood banks to be applied to Chagas' disease. Seven thousand, nine hundred and ninety nine blood donor samples were screened by both reverse passive hemagglutination (RPHA) and indirect immunofluorescence assay (IFA). Samples reactive on RPHA and/or IFA were submitted to supplementary RPHA, IFA and complement fixation (CFA) tests. This strategy allowed us to create a panel of 60 samples to evaluate the ELISA methodology from 3 different manufacturers. The sensitivity of the screening by IFA and the 3 different ELISA's was 100%. The specificity was better on ELISA methodology. For Chagas disease, ELISA seems to be the best test for blood donor screening, because it showed high sensitivity and specificity, it is not subjective and can be automated. Therefore, it was possible to propose an algorithm to screen samples and confirm donor results at the blood bank.
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Tede de Doutoramento, na especialidade de Ciências Políticas apresentada à FDUNL
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Neuroscience
Resumo:
Paper presented at the Colloquium Gerpisa 2013, Paris (http://gerpisa.org/node/2085), Session n°: 19 New kinds of mobility: old and new business models
Resumo:
Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation
Resumo:
Dissertation presented to obtain the PhD degree in Biochemistry