982 resultados para Hidden variable theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical charges in soil particles are divided into structural or permanent charges and variable charges. Permanent charges develop on the soil particle surface by isomorphic substitution. Variable charges arise from dissociation and association of protons (H+), protonation or deprotonation, and specific adsorption of cations and anions. The aim of this study was to quantify the permanent charges and variable charges of Reference Soils of the State of Pernambuco, Brazil. To do so, 24 subsurface profiles from different regions (nine in the Zona da Mata, eight in the Agreste, and seven in the Sertão) were sampled, representing approximately 80 % of the total area of the state. Measurements were performed using cesium chloride solution. Determination was made of the permanent charges and the charges in regard to the hydroxyl functional groups through selective ion exchange of Cs+ by Li+ and Cs+ by NH4+, respectively. All the soils analyzed exhibited variable cation exchange capacity, with proportions from 0.16 to 0.60 and an average of 0.40 when related to total cation exchange capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address the problem of consistently constructing Langevin equations to describe fluctuations in nonlinear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property, together with the macroscopic knowledge of the system, is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All derivations of the one-dimensional telegraphers equation, based on the persistent random walk model, assume a constant speed of signal propagation. We generalize here the model to allow for a variable propagation speed and study several limiting cases in detail. We also show the connections of this model with anomalous diffusion behavior and with inertial dichotomous processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.