999 resultados para Heat transference
Resumo:
Recent research on Variable Stiffness (VS) laminates, which are constructed by steering the fiber orientation as a spatial function of location, have shown to improve laminate performance under mechanical loads. Two distinct cases of stiffness variation can be achieved either by variation of the fiber orientation in the direction of the global x-axis, or perpendicular to it. In the present paper, thermal analysis of a VS laminate is performed to study the effect of steering fibers on transient heat conduction under uniform heat flux using finite element method. The goal of the present paper is a parametric study of the effect of variable stiffness properties on transient response including time to reach steady state and temperature profile. Also, stress resultants and maximum stress location are investigated under different boundary conditions. A FEM algorithm is applied to exactly incorporate the boundary conditions for stress resultant analysis.
Resumo:
Recent research on Variable Stiffness (VS) laminates, which are constructed by steering the fiber orientation as a spatial function of location, have shown to improve laminate performance under mechanical loads. Two distinct cases of stiffness variation can be achieved either by variation of the fiber orientation in the direction of the global x-axis, or perpendicular to it. In the present paper, thermal analysis of VS laminate is performed to study the effect of steering fibers on transient heat conduction under uniform heat flux using finite element method. The goal of the present paper is a parametric study of the
effect of variable stiffness properties on transient response including time to reach steady state and temperature profile. Also, stress resultants and maximum stress location are investigated under different boundary conditions. A FEM algorithm is applied to exactly incorporate the boundary conditions.
Resumo:
Activating mutations of the FMS-like tyrosine kinase 3 gene (FLT3) occur in approximately one-third of patients with acute myeloid leukaemia (AML) and predict for a poor outcome. Heat shock protein 90 (Hsp90) is a molecular chaperone that is frequently used by cancer cells to stabilise mutant oncoproteins. Mutant FLT3 is chaperoned by Hsp90 in primary AML blasts whereas unmutated FLT3 is not, making Hsp90 inhibitors potentially useful therapeutically. The present study showed that inhibition of Hsp90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) was cytotoxic to primary AML cells expressing mutant FLT3. Inhibition of Hsp90 results in altered downstream signalling effects in primary AML cells with disruption of Janus kinase-signal transducer and activator of transcription (JAK-STAT), mitogen-activated protein kinase and phosphatidylinositol 3/AKT signalling pathways. Co-treatment of blasts with 17-AAG and cytarabine resulted in a synergistic or additive effect in approximately 50% of AML cases tested. Our results confirm that Hsp90 is a valid molecular target in the therapy of AML. Inhibition of Hsp90 in parallel with conventional AML therapies may have particular benefit in those patients with the poor prognostic FLT3 mutant disease.
Resumo:
Chlorination of wheat flour in the EU countries has been replaced in recent years, to some extent, by heat treated flour which is used to produce high ratio cakes. Heat treated flour allows high ratio recipes to be developed which generate products with longer shelf life, finer texture, moist crumb and sweeter taste. The mechanism by which heat treatment improves the flour is not fully understood, but it is known that during the heat treatment process, protein denaturation and partial gelatinisation of the starch granules occurs, as well as an increase in batter viscosity. Therefore, it is important to optimize the flour heat treatment process, in order to enhance baking quality. Laboratory preparation of heat treated base wheat flour (culinary, soft, low protein) was carried out in a fluidised bed drier using a range of temperatures and times. The gluten was extracted from the final product and its quality was tested, to obtain objective and comparative information on the extent of protein denaturation. The results indicated that heat treatment of flour decreases gluten extensibility and partial gelatinisation of the starch granules occurred. After heat treatment the gluten appeared to retain moisture. The optimum time/temperature for the heat treatment of base flour was 120-130°C for 30 min with moisture content of ˜12.5%.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
Thermal management as a method of heightening performance in miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and the industry. One of the current challenges is to design heat sinks with uniform flow distribution. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three dimensional mixture model from the computational fluid dynamics software, FLUENT 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3 of the channel length, and their widths were one and two times larger than the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement of up to 55% on flow distribution compared with the standard straight channel configuration without a penalty in the pressure drop. Further discussion about the effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.
Resumo:
One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.
Resumo:
In any internal combustion engine, the amount of heat rejected from the engine, and associated systems, is a result of the engine inefficiency. Successfully recovering a small proportion of this energy would therefore substantially improve the fuel economy.
Resumo:
High thermal load appears at the blade tip and casing of a gas turbine engine. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, computational fluid dynamics tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (444 K) and high (800 K) inlet temperatures and nonuniform (parabolic) temperature profiles have been considered at a fixed rotor rotation speed (9500 rpm). The results showed that the change of flow properties at a higher inlet temperature yields significant variations in the leakage flow aerodynamics and heat transfer relative to the lower inlet temperature condition. Aerodynamic behavior of the tip leakage flow varies significantly with the distortion of turbine inlet temperature. For more realistic inlet condition, the velocity range is insignificant at all the time instants. At a high inlet temperature, reverse secondary flow is strongly opposed by the tip leakage flow and the heat transfer fluctuations are reduced greatly.
Resumo:
The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.
Resumo:
Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.