889 resultados para Harmonic spaces
Resumo:
We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space X being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.
Resumo:
Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.
Resumo:
We study the Von Neumann and Renyi entanglement entropy of long-range harmonic oscillators (LRHO) by both theoretical and numerical means. We show that the entanglement entropy in massless harmonic oscillators increases logarithmically with the sub-system size as S - c(eff)/3 log l. Although the entanglement entropy of LRHO's shares some similarities with the entanglement entropy at conformal critical points we show that the Renyi entanglement entropy presents some deviations from the expected conformal behaviour. In the massive case we demonstrate that the behaviour of the entanglement entropy with respect to the correlation length is also logarithmic as the short-range case. Copyright (c) EPLA, 2012
Resumo:
Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.
Resumo:
We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.
Resumo:
This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.
Resumo:
We present a new approach to perform calculations with the certain standard classes in cohomology of the moduli spaces of curves. It is based on an important lemma of Ionel relating the intersection theoriy of the moduli space of curves and that of the space of admissible coverings. As particular results, we obtain expressions of Hurwitz numbers in terms of the intersections in the tautological ring, expressions of the simplest intersection numbers in terms of Hurwitz numbers, an algorithm of calculation of certain correlators which are the subject of the Witten conjecture, an improved algorithm for intersections related to the Boussinesq hierarchy, expressions for the Hodge integrals over two-pointed ramification cycles, cut-and-join type equations for a large class of intersection numbers, etc.
Resumo:
[EN] The purpose of this paper is to present some fixed point theorems for Meir-Keeler contractions in a complete metric space endowed with a partial order. MSC: 47H10.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
[ES]Recientemente, en la Teoría del punto fijo, han aparecido muchos resultados que obtienen condiciones suficientes para la existencia de un punto fijo si trabajamos con aplicaciones en un conjunto dotado de un orden parcial. Generalmente, estos resultados combinan dos teoremas del punto fijo fundamentales: el Teorema de la contracción de Banach y el Teorema de Knaster-Tarski.
A 2D BEM-FEM approach for time harmonic fluid-structure interaction analysis of thin elastic bodies.
Resumo:
[EN]This paper deals with two-dimensional time harmonic fluid-structure interaction problems when the fluid is at rest, and the elastic bodies have small thicknesses. A BEM-FEM numerical approach is used, where the BEM is applied to the fluid, and the structural FEM is applied to the thin elastic bodies.
Resumo:
[EN]We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree. ..
Resumo:
[EN]We present a new strategy for constructing spline spaces over hierarchical T-meshes with quad- and octree subdivision scheme. The proposed technique includes some simple rules for inferring local knot vectors to define C 2 -continuous cubic tensor product spline blending functions. Our conjecture is that these rules allow to obtain, for a given T-mesh, a set of linearly independent spline functions with the property that spaces spanned by nested T-meshes are also nested, and therefore, the functions can reproduce cubic polynomials. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0- balanced mesh...
Resumo:
[EN]We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree. ..
Resumo:
Two of the main features of today complex software systems like pervasive computing systems and Internet-based applications are distribution and openness. Distribution revolves around three orthogonal dimensions: (i) distribution of control|systems are characterised by several independent computational entities and devices, each representing an autonomous and proactive locus of control; (ii) spatial distribution|entities and devices are physically distributed and connected in a global (such as the Internet) or local network; and (iii) temporal distribution|interacting system components come and go over time, and are not required to be available for interaction at the same time. Openness deals with the heterogeneity and dynamism of system components: complex computational systems are open to the integration of diverse components, heterogeneous in terms of architecture and technology, and are dynamic since they allow components to be updated, added, or removed while the system is running. The engineering of open and distributed computational systems mandates for the adoption of a software infrastructure whose underlying model and technology could provide the required level of uncoupling among system components. This is the main motivation behind current research trends in the area of coordination middleware to exploit tuple-based coordination models in the engineering of complex software systems, since they intrinsically provide coordinated components with communication uncoupling and further details in the references therein. An additional daunting challenge for tuple-based models comes from knowledge-intensive application scenarios, namely, scenarios where most of the activities are based on knowledge in some form|and where knowledge becomes the prominent means by which systems get coordinated. Handling knowledge in tuple-based systems induces problems in terms of syntax - e.g., two tuples containing the same data may not match due to differences in the tuple structure - and (mostly) of semantics|e.g., two tuples representing the same information may not match based on a dierent syntax adopted. Till now, the problem has been faced by exploiting tuple-based coordination within a middleware for knowledge intensive environments: e.g., experiments with tuple-based coordination within a Semantic Web middleware (surveys analogous approaches). However, they appear to be designed to tackle the design of coordination for specic application contexts like Semantic Web and Semantic Web Services, and they result in a rather involved extension of the tuple space model. The main goal of this thesis was to conceive a more general approach to semantic coordination. In particular, it was developed the model and technology of semantic tuple centres. It is adopted the tuple centre model as main coordination abstraction to manage system interactions. A tuple centre can be seen as a programmable tuple space, i.e. an extension of a Linda tuple space, where the behaviour of the tuple space can be programmed so as to react to interaction events. By encapsulating coordination laws within coordination media, tuple centres promote coordination uncoupling among coordinated components. Then, the tuple centre model was semantically enriched: a main design choice in this work was to try not to completely redesign the existing syntactic tuple space model, but rather provide a smooth extension that { although supporting semantic reasoning { keep the simplicity of tuple and tuple matching as easier as possible. By encapsulating the semantic representation of the domain of discourse within coordination media, semantic tuple centres promote semantic uncoupling among coordinated components. The main contributions of the thesis are: (i) the design of the semantic tuple centre model; (ii) the implementation and evaluation of the model based on an existent coordination infrastructure; (iii) a view of the application scenarios in which semantic tuple centres seem to be suitable as coordination media.